Runoff simulation driven by multi-source satellite data based on hydrological mechanism algorithm and deep learning network

地表径流 计算机科学 机制(生物学) 算法 卫星 深度学习 人工智能 工程类 航空航天工程 生态学 生物 认识论 哲学
作者
Yu Chen,Deyong Hu,Huaiyong Shao,Xiaoai Dai,Gang Liu,Shuang Wu
出处
期刊:Journal of Hydrology: Regional Studies [Elsevier BV]
卷期号:52: 101720-101720 被引量:1
标识
DOI:10.1016/j.ejrh.2024.101720
摘要

Four sub-basins of the Songhua River basin, northeast China. Conventional runoff models typically require in-depth knowledge of the hydrological and physical processes and are costly to construct and compute. Moreover, these models predominantly rely on ground site data, where incomplete or delayed data might introduce simulation uncertainty. Therefore, it is imperative to provide a scientifically rigorous and rational approach for simulating the runoff process, effectively addressing the limitations of existing methods. Combining a long short-term memory (LSTM) network with a modified Michel soil conservation service (MMSCS) algorithm, this study proposed the LSTM-MMSCS runoff simulation scheme. The LSTM-MMSCS model was constructed by adjusting and optimizing the difference characteristics of the LSTM runoff simulation by establishing regression relationships according to the MMSCS-calculated runoff depth. LSTM-MMSCS adopted the coupling method of hydrological mechanism and deep learning to establish a simulation framework with adaptive feedback and adjustment between observed and simulated data. This scheme incorporated satellite meteorological products, solving the problem of inaccuracies caused by standard models' ineffective mining of temporal series information. LSTM-MMSCS reduced overall runoff error (RMSE was reduced from 50.07 mm to 24.47 mm) and effectively alleviated the problem of peak runoff underestimation (the relative error was reduced from 30.39% to 13.39%) compared to LSTM. Using satellite meteorological data to drive LSTM-MMSCS enabled runoff change trends visualization and aids in abnormal runoff localization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
yue发布了新的文献求助30
3秒前
3秒前
Orange应助Bonnienuit采纳,获得10
4秒前
茉克完成签到,获得积分10
4秒前
别忘了吃胶囊完成签到,获得积分10
4秒前
略略略完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
7秒前
8秒前
亮liang发布了新的文献求助10
9秒前
茉克发布了新的文献求助10
10秒前
10秒前
肥鲸鱼完成签到,获得积分10
11秒前
chengs发布了新的文献求助10
12秒前
13秒前
15秒前
冰林乘夏发布了新的文献求助10
15秒前
neckerzhu发布了新的文献求助10
15秒前
乐乐应助天天向上采纳,获得10
15秒前
ShiRz发布了新的文献求助10
16秒前
打打应助tzh采纳,获得10
16秒前
17秒前
勇者小超人完成签到,获得积分10
17秒前
捕猎者hhr完成签到,获得积分20
19秒前
chengs完成签到,获得积分10
19秒前
21秒前
23秒前
24秒前
songsongsong应助yy采纳,获得10
24秒前
ding应助程小柒采纳,获得10
26秒前
安鲁完成签到,获得积分10
27秒前
27秒前
27秒前
tzh发布了新的文献求助10
27秒前
29秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4097389
求助须知:如何正确求助?哪些是违规求助? 3635071
关于积分的说明 11522404
捐赠科研通 3345356
什么是DOI,文献DOI怎么找? 1838601
邀请新用户注册赠送积分活动 906166
科研通“疑难数据库(出版商)”最低求助积分说明 823492