Runoff simulation driven by multi-source satellite data based on hydrological mechanism algorithm and deep learning network

地表径流 计算机科学 机制(生物学) 算法 卫星 深度学习 人工智能 工程类 航空航天工程 生态学 哲学 认识论 生物
作者
Yu Chen,Deyong Hu,Huaiyong Shao,Xiaoai Dai,Gang Liu,Shuang Wu
出处
期刊:Journal of Hydrology: Regional Studies [Elsevier BV]
卷期号:52: 101720-101720 被引量:1
标识
DOI:10.1016/j.ejrh.2024.101720
摘要

Four sub-basins of the Songhua River basin, northeast China. Conventional runoff models typically require in-depth knowledge of the hydrological and physical processes and are costly to construct and compute. Moreover, these models predominantly rely on ground site data, where incomplete or delayed data might introduce simulation uncertainty. Therefore, it is imperative to provide a scientifically rigorous and rational approach for simulating the runoff process, effectively addressing the limitations of existing methods. Combining a long short-term memory (LSTM) network with a modified Michel soil conservation service (MMSCS) algorithm, this study proposed the LSTM-MMSCS runoff simulation scheme. The LSTM-MMSCS model was constructed by adjusting and optimizing the difference characteristics of the LSTM runoff simulation by establishing regression relationships according to the MMSCS-calculated runoff depth. LSTM-MMSCS adopted the coupling method of hydrological mechanism and deep learning to establish a simulation framework with adaptive feedback and adjustment between observed and simulated data. This scheme incorporated satellite meteorological products, solving the problem of inaccuracies caused by standard models' ineffective mining of temporal series information. LSTM-MMSCS reduced overall runoff error (RMSE was reduced from 50.07 mm to 24.47 mm) and effectively alleviated the problem of peak runoff underestimation (the relative error was reduced from 30.39% to 13.39%) compared to LSTM. Using satellite meteorological data to drive LSTM-MMSCS enabled runoff change trends visualization and aids in abnormal runoff localization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
百无一用关注了科研通微信公众号
2秒前
Daisy完成签到,获得积分10
3秒前
SYLH应助BulingQAQ采纳,获得10
3秒前
科研通AI5应助神明采纳,获得10
5秒前
爱撒娇的冰安完成签到,获得积分20
6秒前
6秒前
Daisy发布了新的文献求助10
6秒前
1134发布了新的文献求助10
7秒前
7秒前
仙笛童神发布了新的文献求助10
10秒前
华仔应助王大帅采纳,获得10
10秒前
首席医官完成签到,获得积分10
11秒前
金鑫水淼发布了新的文献求助10
11秒前
12秒前
邢范雨发布了新的文献求助20
12秒前
孤独的涵柳完成签到 ,获得积分10
13秒前
林夕发布了新的文献求助10
13秒前
13秒前
SYLH应助淡淡小霜采纳,获得10
14秒前
15秒前
烂漫人达发布了新的文献求助10
15秒前
16秒前
17秒前
18秒前
18秒前
Orange应助东风采纳,获得10
19秒前
19秒前
沐沐发布了新的文献求助10
19秒前
123456完成签到,获得积分10
20秒前
22秒前
神明发布了新的文献求助10
23秒前
23秒前
关键词发布了新的文献求助10
23秒前
kali发布了新的文献求助10
24秒前
24秒前
情怀应助刘十三采纳,获得10
25秒前
25秒前
朴实的青雪完成签到,获得积分10
26秒前
高分求助中
Practitioner Research at Doctoral Level 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3797638
求助须知:如何正确求助?哪些是违规求助? 3343077
关于积分的说明 10314637
捐赠科研通 3059803
什么是DOI,文献DOI怎么找? 1679098
邀请新用户注册赠送积分活动 806343
科研通“疑难数据库(出版商)”最低求助积分说明 763102