A hybrid CEEMDAN-VMD-TimesNet model for significant wave height prediction in the South Sea of China

有效波高 气象学 波高 台风 数学 风浪 物理 热力学
作者
Tong Ding,De-an Wu,Yuming Li,Liangshuai Shen,Xiaogang Zhang
出处
期刊:Frontiers in Marine Science [Frontiers Media]
卷期号:11 被引量:3
标识
DOI:10.3389/fmars.2024.1375631
摘要

Accurate prediction of significant wave height is of great reference value for wave energy generation. However, due to the non-linearity and non-stationarity of significant wave height, traditional algorithms face difficulties in achieving satisfactory prediction results. In this study, a hybrid CEEMDAN-VMD-TimesNet model is proposed for non-stationary significant wave height prediction. Based on the significant wave height in the South Sea of China, the performance of the SVM model, the GRU model, the LSTM model, the TimesNet model, the CEEMDAN-TimesNet model and the CEEMDAN-VMD-TimesNet model are compared in terms of multi-step prediction. It is found that the prediction accuracy of the TimesNet model is higher than that of the SVM model, the GRU model and the LSTM model. The non-stationarity of significant wave height is reduced by CEEMDAN decomposition. Thus, the CEEMDAN-TimesNet model performs better than the TimesNet model in predicting significant wave height. The prediction accuracy of the CEEMDAN-VMD-TimesNet model is further improved by employing VMD for the secondary decomposition of components with high and moderate complexity. Additionally, the CEEMDAN-VMD-TimesNet model can accurately predict trends and extreme values of significant wave height with minimal phase shifts even during typhoon periods. The results demonstrate that the CEEMDAN-VMD-TimesNet model exhibits superiority in predicting significant wave height.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
MMM完成签到 ,获得积分10
刚刚
我是弱智先帮我完成签到,获得积分10
1秒前
科研通AI5应助星睿采纳,获得10
1秒前
xiaofan完成签到,获得积分10
1秒前
小王完成签到,获得积分10
1秒前
祖f完成签到,获得积分10
1秒前
Hh完成签到,获得积分10
1秒前
1秒前
曾经的刺猬完成签到,获得积分10
1秒前
zhj完成签到,获得积分10
1秒前
fearlessji完成签到 ,获得积分10
1秒前
小狐狸完成签到,获得积分10
1秒前
世界上最后一只呜呜怪完成签到,获得积分10
2秒前
2秒前
3秒前
红李子发布了新的文献求助10
4秒前
欢呼的世平完成签到,获得积分10
4秒前
西木完成签到,获得积分10
4秒前
万能图书馆应助海孩子采纳,获得10
4秒前
eyyjxl完成签到,获得积分20
4秒前
NexusExplorer应助琉璃采纳,获得10
4秒前
掉渣的饼干完成签到,获得积分10
4秒前
4秒前
123完成签到,获得积分10
5秒前
yrr发布了新的文献求助10
5秒前
5秒前
5秒前
zzz完成签到,获得积分10
5秒前
zhang005on完成签到,获得积分10
6秒前
sx发布了新的文献求助10
6秒前
香精完成签到,获得积分10
6秒前
落后紫夏完成签到,获得积分10
7秒前
靓丽行天完成签到,获得积分10
7秒前
在水一方应助mmyhn采纳,获得10
7秒前
ZY完成签到 ,获得积分10
7秒前
Wang完成签到,获得积分10
7秒前
iceeer完成签到,获得积分10
8秒前
8秒前
8秒前
高分求助中
Handbook of Diagnosis and Treatment of DSM-5-TR Personality Disorders 800
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
建筑材料检测与应用 370
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3830708
求助须知:如何正确求助?哪些是违规求助? 3373047
关于积分的说明 10477167
捐赠科研通 3093166
什么是DOI,文献DOI怎么找? 1702362
邀请新用户注册赠送积分活动 818956
科研通“疑难数据库(出版商)”最低求助积分说明 771173