Deep Reinforcement Learning for Structural Model Updating Using Transfer Learning Mechanism

强化学习 计算机科学 机制(生物学) 学习迁移 人工智能 哲学 认识论
作者
Issac Kwok-Tai Pang,Yuqing Gao,Khalid M. Mosalam
出处
期刊:Computing in Civil Engineering 卷期号:: 364-371
标识
DOI:10.1061/9780784485231.044
摘要

Structural simulation models using pre-defined assumptions and values of material properties usually produce results that differ from the real structures with varying degree of accuracy. This is commonly attributed to two broad types of uncertainties, namely aleatory (related to inherent randomness) and epistemic (related to lack of knowledge). Sources of such uncertainties include material properties, construction techniques, aging, and natural or man-made hazard-induced damage. Accurate computational models with on-time model updating capabilities are important goals in engineering research and practice for monitoring the structural health during the operation stage and for making rapid and well-informed decisions following extreme events, for example, major earthquakes. Moreover, the advances and recent adoption of artificial intelligence technologies bring effective and innovative solutions for the structural model updating endeavors. In this paper, a novel model updating method is proposed using two deep reinforcement learning algorithms, namely, Advantage Actor-Critic and Asynchronous Advantage Actor-Critic. In addition, transfer learning is adopted, which generalizes the trained model to various scenarios and enhances the computational efficiency. Through several computer experiments, the results demonstrate the high accuracy and computational efficiency of the proposed approach, which brings about its promising potential for practical engineering applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
美有姬发布了新的文献求助10
刚刚
任老三完成签到,获得积分10
刚刚
万能图书馆应助MAY1998采纳,获得10
2秒前
liangyuting完成签到,获得积分10
3秒前
顾矜应助wg言采纳,获得10
5秒前
美有姬完成签到,获得积分10
8秒前
单纯的书兰完成签到,获得积分20
14秒前
情怀应助ludwig采纳,获得10
15秒前
16秒前
18秒前
18秒前
WeihaoLuo完成签到 ,获得积分10
18秒前
21秒前
健忘惜萱发布了新的文献求助10
22秒前
MAY1998发布了新的文献求助10
23秒前
jasur发布了新的文献求助10
24秒前
25秒前
怕孤单的问雁完成签到,获得积分20
25秒前
25秒前
25秒前
ludwig完成签到,获得积分20
27秒前
28秒前
John_sdu完成签到,获得积分10
28秒前
29秒前
31秒前
奥奥没有利饼干完成签到 ,获得积分10
31秒前
ludwig发布了新的文献求助10
31秒前
32秒前
量子星尘发布了新的文献求助10
34秒前
35秒前
36秒前
万能图书馆应助千帆采纳,获得10
36秒前
36秒前
axis完成签到,获得积分10
37秒前
38秒前
cavalry发布了新的文献求助10
38秒前
Ava应助g3618采纳,获得10
38秒前
39秒前
axis发布了新的文献求助10
40秒前
41秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959210
求助须知:如何正确求助?哪些是违规求助? 3505538
关于积分的说明 11124306
捐赠科研通 3237248
什么是DOI,文献DOI怎么找? 1789010
邀请新用户注册赠送积分活动 871512
科研通“疑难数据库(出版商)”最低求助积分说明 802824