Boosting Variational Inference With Margin Learning for Few-Shot Scene-Adaptive Anomaly Detection

边距(机器学习) 计算机科学 推论 人工智能 异常检测 概率逻辑 嵌入 一般化 生成模型 模式识别(心理学) 机器学习 计算机视觉 生成语法 数学 数学分析
作者
Xin Huang,Yutao Hu,Xiaoyan Luo,Jungong Han,Baochang Zhang,Xianbin Cao
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:33 (6): 2813-2825 被引量:5
标识
DOI:10.1109/tcsvt.2022.3227716
摘要

Anomaly detection in surveillance videos aims to identify frames where abnormal events happen. Existing approaches assume that the training and testing videos are from the same scene, exhibiting poor generalization performance when encountering an unseen scene. In this paper, we propose a Variational Anomaly Detection Network (VADNet), which is characterized by its high scene-adaptation - it can identify abnormal events in a new scene only via referring to a few normal samples without fine-tuning. Our model embodies two major innovations. First, a novel Variational Normal Inference (VNI) module is proposed to formulate image reconstruction in a conditional variational auto-encoder (CVAE) framework, which learns a probabilistic decision model instead of a traditional deterministic one. Secondly, a Margin Learning Embedding (MLE) module is leveraged to boost the variational inference and aid in distinguishing normal events. We theoretically demonstrate that minimizing the triplet loss in MLE module facilitates maximizing the evidence lower bound (ELBO) of CVAE, which promotes the convergence of VNI. By incorporating variational inference with margin learning, VADNet becomes much more generative that is able to handle the uncertainty caused by the changed scene and limited reference data. Extensive experiments on several datasets demonstrate that the proposed VADNet can adapt to a new scene effectively without fine-tuning and achieve remarkable performance, which outperforms other methods significantly and establishes new state-of-the-art in the case of few-shot scene-adaptive anomaly detection. We believe our method is closer to real-world application due to its strong generalization ability. All codes are released in https://github.com/huangxx156/VADNet .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Zayro完成签到,获得积分10
2秒前
2秒前
2秒前
lalal发布了新的文献求助10
3秒前
lulu123完成签到,获得积分10
3秒前
3秒前
syhjxk发布了新的文献求助10
3秒前
Yolo完成签到,获得积分10
6秒前
一缕阳光发布了新的文献求助10
6秒前
Jasper应助林林l采纳,获得10
7秒前
lulu123发布了新的文献求助10
7秒前
liuzf发布了新的文献求助10
8秒前
冷静安露完成签到,获得积分10
11秒前
Peng丶Young完成签到,获得积分10
11秒前
12秒前
小橘子吃傻子应助Yolo采纳,获得30
12秒前
偷乐完成签到,获得积分10
13秒前
lyj完成签到 ,获得积分10
15秒前
HiK完成签到,获得积分10
16秒前
愫问发布了新的文献求助10
17秒前
Davidjin完成签到,获得积分10
17秒前
lyj关注了科研通微信公众号
18秒前
蓝蜗牛完成签到,获得积分10
22秒前
charih完成签到 ,获得积分10
22秒前
可爱的函函应助愫问采纳,获得10
24秒前
落后的凝梦完成签到 ,获得积分10
25秒前
慕青应助崩溃的实验采纳,获得10
26秒前
Ava应助半夏采纳,获得10
30秒前
syhjxk完成签到,获得积分10
32秒前
wanci应助HHHH采纳,获得10
33秒前
不安青牛应助Yolo采纳,获得10
35秒前
一缕阳光完成签到 ,获得积分10
36秒前
44秒前
48秒前
anyilin发布了新的文献求助10
49秒前
50秒前
张桐赫发布了新的文献求助10
51秒前
lizhiqian2024发布了新的文献求助10
52秒前
Xiaoxiao应助草莓熊1215采纳,获得10
52秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 700
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
Ene—X Compounds (X = S, Se, Te, N, P) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4129433
求助须知:如何正确求助?哪些是违规求助? 3666485
关于积分的说明 11599657
捐赠科研通 3365082
什么是DOI,文献DOI怎么找? 1849020
邀请新用户注册赠送积分活动 912857
科研通“疑难数据库(出版商)”最低求助积分说明 828259