Boosting Variational Inference With Margin Learning for Few-Shot Scene-Adaptive Anomaly Detection

边距(机器学习) 计算机科学 推论 人工智能 异常检测 概率逻辑 嵌入 一般化 生成模型 模式识别(心理学) 机器学习 计算机视觉 生成语法 数学 数学分析
作者
Xin Huang,Yutao Hu,Xiaoyan Luo,Jungong Han,Baochang Zhang,Xianbin Cao
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:33 (6): 2813-2825 被引量:5
标识
DOI:10.1109/tcsvt.2022.3227716
摘要

Anomaly detection in surveillance videos aims to identify frames where abnormal events happen. Existing approaches assume that the training and testing videos are from the same scene, exhibiting poor generalization performance when encountering an unseen scene. In this paper, we propose a Variational Anomaly Detection Network (VADNet), which is characterized by its high scene-adaptation - it can identify abnormal events in a new scene only via referring to a few normal samples without fine-tuning. Our model embodies two major innovations. First, a novel Variational Normal Inference (VNI) module is proposed to formulate image reconstruction in a conditional variational auto-encoder (CVAE) framework, which learns a probabilistic decision model instead of a traditional deterministic one. Secondly, a Margin Learning Embedding (MLE) module is leveraged to boost the variational inference and aid in distinguishing normal events. We theoretically demonstrate that minimizing the triplet loss in MLE module facilitates maximizing the evidence lower bound (ELBO) of CVAE, which promotes the convergence of VNI. By incorporating variational inference with margin learning, VADNet becomes much more generative that is able to handle the uncertainty caused by the changed scene and limited reference data. Extensive experiments on several datasets demonstrate that the proposed VADNet can adapt to a new scene effectively without fine-tuning and achieve remarkable performance, which outperforms other methods significantly and establishes new state-of-the-art in the case of few-shot scene-adaptive anomaly detection. We believe our method is closer to real-world application due to its strong generalization ability. All codes are released in https://github.com/huangxx156/VADNet .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mbxjsy发布了新的文献求助10
1秒前
1秒前
认真夜云发布了新的文献求助30
2秒前
3秒前
饿了呼啦啦完成签到 ,获得积分10
3秒前
5秒前
6秒前
shy发布了新的文献求助10
6秒前
一一应助nusiew采纳,获得10
6秒前
丑123发布了新的文献求助10
8秒前
9秒前
9秒前
Ice完成签到 ,获得积分10
9秒前
缓慢思枫发布了新的文献求助10
10秒前
12秒前
Lixuan完成签到 ,获得积分20
12秒前
英姑应助稳重的招牌采纳,获得10
12秒前
luyao970131发布了新的文献求助10
13秒前
小线团黑桃完成签到,获得积分10
13秒前
丘比特应助科研通管家采纳,获得10
13秒前
852应助科研通管家采纳,获得10
14秒前
华仔应助科研通管家采纳,获得10
14秒前
香蕉觅云应助科研通管家采纳,获得10
14秒前
王世缘发布了新的文献求助10
14秒前
共享精神应助科研通管家采纳,获得10
14秒前
14秒前
搜集达人应助科研通管家采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
研友_zndy9Z发布了新的文献求助10
15秒前
15秒前
18秒前
万能图书馆应助丑123采纳,获得10
19秒前
19秒前
20秒前
孔难破发布了新的文献求助10
20秒前
卡片发布了新的文献求助10
20秒前
20秒前
西门长海发布了新的文献求助10
21秒前
小马甲应助等待的剑身采纳,获得10
22秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3802474
求助须知:如何正确求助?哪些是违规求助? 3348068
关于积分的说明 10336437
捐赠科研通 3064012
什么是DOI,文献DOI怎么找? 1682348
邀请新用户注册赠送积分活动 808078
科研通“疑难数据库(出版商)”最低求助积分说明 763997