Entropy-Guided Robust Feature Domain Adaptation for Eeg-Based Cross-Dataset Drowsiness Recognition

模式识别(心理学) 人工智能 计算机科学 语音识别 脑电图 域适应 特征(语言学) 熵(时间箭头) 心理学 神经科学 物理 分类器(UML) 语言学 哲学 量子力学
作者
Liqiang Yuan,Ruilin Li,Jian Cui,Siyal Yakoob Mohammed
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
被引量:1
标识
DOI:10.2139/ssrn.4274381
摘要

Driver drowsiness is one of the main factors that cause road accidents. Development of drowsiness monitoring system is of top priority for road safety and accident prevention. By monitoring voltage fluctuations on the scalp that reflect mental activities taking place in the brain, electroencephalography (EEG) has been regarded as one of the best methods to detect drowsiness. However, the main problem of EEG is its low signal-to-noise rate and vulnerability to various kinds of noise that cause both individual-level variations and group-level drifts due to different devices and environments. In order to solve the problem, we propose an entropy-guided robust feature (EGRF) adaptation framework, which uses the state-of-the-art model named Interpretable Convolutional Neural Network (ICNN) as backbone to extract shared features across different subjects and a novel unsupervised domain adaptation (UDA) technique to minimize the group-level drifts of EEG data. We use two public driving datasets SEED-VIG and SADT to test the method on the cross-dataset setting. Results show that the model has achieved a mean accuracy of 75.1% for two-class drowsiness recognition on 11 subjects when SADT is used as the source dataset and Seed-Vig is used as target, which is higher than the baseline methods ranging from 60.1% to 68.6%. On the reverse setting, the model achieves a mean accuracy of 80% on 12 subjects, which is higher than baseline from ranging from 60.4% to 73.1%. Our work illustrates a promising direction of using EEG for calibration-free driver drowsiness recognition system.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
七七完成签到,获得积分10
刚刚
张二十八完成签到,获得积分10
1秒前
明眸完成签到 ,获得积分10
4秒前
多久上课完成签到,获得积分10
5秒前
Jayson完成签到,获得积分10
9秒前
10秒前
11秒前
13秒前
修仙中发布了新的文献求助10
14秒前
17秒前
多久上课发布了新的文献求助10
17秒前
愉快青发布了新的文献求助10
23秒前
SciGPT应助科研通管家采纳,获得10
23秒前
李爱国应助科研通管家采纳,获得10
23秒前
CAOHOU应助科研通管家采纳,获得10
23秒前
23秒前
bkagyin应助科研通管家采纳,获得10
23秒前
23秒前
CAOHOU应助科研通管家采纳,获得10
24秒前
24秒前
pluto应助科研通管家采纳,获得10
24秒前
24秒前
李健应助科研通管家采纳,获得10
24秒前
chever应助科研通管家采纳,获得20
24秒前
CAOHOU应助科研通管家采纳,获得10
24秒前
24秒前
29秒前
科研通AI5应助123采纳,获得10
31秒前
田様应助扶手采纳,获得10
33秒前
Dengr完成签到,获得积分10
34秒前
34秒前
grass完成签到,获得积分10
37秒前
TLLL完成签到,获得积分20
40秒前
搜集达人应助多久上课采纳,获得10
42秒前
djf完成签到,获得积分10
44秒前
45秒前
chriswu1996完成签到,获得积分10
46秒前
赘婿应助积极书双采纳,获得10
47秒前
研友_VZG7GZ应助科研狗采纳,获得10
49秒前
50秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Diagnostic Imaging: Pediatric Neuroradiology 2000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 720
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4132391
求助须知:如何正确求助?哪些是违规求助? 3669092
关于积分的说明 11603360
捐赠科研通 3366159
什么是DOI,文献DOI怎么找? 1849371
邀请新用户注册赠送积分活动 913015
科研通“疑难数据库(出版商)”最低求助积分说明 828396