Entropy-Guided Robust Feature Domain Adaptation for Eeg-Based Cross-Dataset Drowsiness Recognition

模式识别(心理学) 人工智能 计算机科学 语音识别 脑电图 域适应 特征(语言学) 熵(时间箭头) 心理学 神经科学 物理 分类器(UML) 语言学 量子力学 哲学
作者
Liqiang Yuan,Ruilin Li,Jian Cui,Siyal Yakoob Mohammed
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
被引量:1
标识
DOI:10.2139/ssrn.4274381
摘要

Driver drowsiness is one of the main factors that cause road accidents. Development of drowsiness monitoring system is of top priority for road safety and accident prevention. By monitoring voltage fluctuations on the scalp that reflect mental activities taking place in the brain, electroencephalography (EEG) has been regarded as one of the best methods to detect drowsiness. However, the main problem of EEG is its low signal-to-noise rate and vulnerability to various kinds of noise that cause both individual-level variations and group-level drifts due to different devices and environments. In order to solve the problem, we propose an entropy-guided robust feature (EGRF) adaptation framework, which uses the state-of-the-art model named Interpretable Convolutional Neural Network (ICNN) as backbone to extract shared features across different subjects and a novel unsupervised domain adaptation (UDA) technique to minimize the group-level drifts of EEG data. We use two public driving datasets SEED-VIG and SADT to test the method on the cross-dataset setting. Results show that the model has achieved a mean accuracy of 75.1% for two-class drowsiness recognition on 11 subjects when SADT is used as the source dataset and Seed-Vig is used as target, which is higher than the baseline methods ranging from 60.1% to 68.6%. On the reverse setting, the model achieves a mean accuracy of 80% on 12 subjects, which is higher than baseline from ranging from 60.4% to 73.1%. Our work illustrates a promising direction of using EEG for calibration-free driver drowsiness recognition system.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ting5260发布了新的文献求助10
1秒前
onmymark完成签到,获得积分10
1秒前
丘比特应助打水不打饭采纳,获得10
1秒前
天天快乐应助打水不打饭采纳,获得10
1秒前
miscell应助打水不打饭采纳,获得10
1秒前
CipherSage应助小孙采纳,获得10
1秒前
刘珍荣发布了新的文献求助10
2秒前
兴奋惜寒发布了新的文献求助10
3秒前
5秒前
ZCY发布了新的文献求助10
7秒前
7秒前
研友_gnv61n完成签到,获得积分0
9秒前
从容半仙发布了新的文献求助10
11秒前
华仔应助mx采纳,获得10
11秒前
12秒前
Yuri完成签到,获得积分10
12秒前
琪琪发布了新的文献求助10
12秒前
兔斯基完成签到 ,获得积分10
13秒前
15秒前
Yuri发布了新的文献求助10
16秒前
鸣笛应助无敌小天天采纳,获得30
16秒前
Pyotr完成签到,获得积分10
17秒前
18秒前
牛牛完成签到,获得积分10
19秒前
斯文败类应助阳光的寻琴采纳,获得10
19秒前
20秒前
小孙发布了新的文献求助10
23秒前
小白完成签到 ,获得积分20
25秒前
万能图书馆应助yongtao采纳,获得10
26秒前
脑洞疼应助无敌小天天采纳,获得10
27秒前
sisi完成签到,获得积分20
28秒前
AX完成签到,获得积分10
30秒前
30秒前
华仔应助典雅的俊驰采纳,获得10
31秒前
基金中中中完成签到,获得积分10
32秒前
33秒前
onmymark发布了新的文献求助10
33秒前
36秒前
36秒前
1.1发布了新的文献求助10
37秒前
高分求助中
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Quantum Computing for Quantum Chemistry 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
Multi-omics analysis reveals the molecular mechanisms and therapeutic targets in high altitude polycythemia 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3899749
求助须知:如何正确求助?哪些是违规求助? 3444358
关于积分的说明 10834679
捐赠科研通 3169272
什么是DOI,文献DOI怎么找? 1751092
邀请新用户注册赠送积分活动 846457
科研通“疑难数据库(出版商)”最低求助积分说明 789191