连接词(语言学)
ARCH模型
溢出效应
计量经济学
风险价值
自回归模型
波动性(金融)
经济
库存(枪支)
尾部依赖
风险管理
统计
财务
数学
多元统计
机械工程
工程类
微观经济学
作者
Can-Zhong Yao,Min-Jian Li
标识
DOI:10.1016/j.najef.2023.101910
摘要
This study proposes a generalized autoregressive conditional heteroskedasticity (GARCH)-mixed data sampling (MIDAS)-generalized autoregressive score (GAS)-copula model to calculate conditional value at risk (CoVaR). Our approach leverages the GARCH-MIDAS model to enhance stock market volatility modeling and incorporates the GAS mechanism to create a copula with dynamic parameters. This approach allows for the precise calculation of both CoVaR and its changes over time (delta CoVaR). The results of our study demonstrate a significant improvement in CoVaR calculation accuracy compared to other models, showcasing the effectiveness of the GARCH-MIDAS-GAS-copula model. In addition, the CoVaR indicator provides a more comprehensive view of risk spillover relationships compared to value at risk (VaR), offering deeper insights into the asymmetrical risk transmission dynamics between the Chinese and US stock markets, providing valuable information for risk management and investment decisions.
科研通智能强力驱动
Strongly Powered by AbleSci AI