清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Predicting treatment response using EEG in major depressive disorder: A machine-learning meta-analysis

重性抑郁障碍 荟萃分析 子群分析 医学 曲线下面积 内科学 精神科 心情
作者
Devon Watts,Rafaela Fernandes Pulice,J.P. Reilly,André R. Brunoni,Flávio Kapczinski,Ives Cavalcante Passos
出处
期刊:Translational Psychiatry [Springer Nature]
卷期号:12 (1) 被引量:59
标识
DOI:10.1038/s41398-022-02064-z
摘要

Abstract Selecting a course of treatment in psychiatry remains a trial-and-error process, and this long-standing clinical challenge has prompted an increased focus on predictive models of treatment response using machine learning techniques. Electroencephalography (EEG) represents a cost-effective and scalable potential measure to predict treatment response to major depressive disorder. We performed separate meta-analyses to determine the ability of models to distinguish between responders and non-responders using EEG across treatments, as well as a performed subgroup analysis of response to transcranial magnetic stimulation (rTMS), and antidepressants (Registration Number: CRD42021257477) in Major Depressive Disorder by searching PubMed, Scopus, and Web of Science for articles published between January 1960 and February 2022. We included 15 studies that predicted treatment responses among patients with major depressive disorder using machine-learning techniques. Within a random-effects model with a restricted maximum likelihood estimator comprising 758 patients, the pooled accuracy across studies was 83.93% (95% CI: 78.90–89.29), with an Area-Under-the-Curve (AUC) of 0.850 (95% CI: 0.747–0.890), and partial AUC of 0.779. The average sensitivity and specificity across models were 77.96% (95% CI: 60.05–88.70), and 84.60% (95% CI: 67.89–92.39), respectively. In a subgroup analysis, greater performance was observed in predicting response to rTMS (Pooled accuracy: 85.70% (95% CI: 77.45–94.83), Area-Under-the-Curve (AUC): 0.928, partial AUC: 0.844), relative to antidepressants (Pooled accuracy: 81.41% (95% CI: 77.45–94.83, AUC: 0.895, pAUC: 0.821). Furthermore, across all meta-analyses, the specificity (true negatives) of EEG models was greater than the sensitivity (true positives), suggesting that EEG models thus far better identify non-responders than responders to treatment in MDD. Studies varied widely in important features across models, although relevant features included absolute and relative power in frontal and temporal electrodes, measures of connectivity, and asymmetry across hemispheres. Predictive models of treatment response using EEG hold promise in major depressive disorder, although there is a need for prospective model validation in independent datasets, and a greater emphasis on replicating physiological markers. Crucially, standardization in cut-off values and clinical scales for defining clinical response and non-response will aid in the reproducibility of findings and the clinical utility of predictive models. Furthermore, several models thus far have used data from open-label trials with small sample sizes and evaluated performance in the absence of training and testing sets, which increases the risk of statistical overfitting. Large consortium studies are required to establish predictive signatures of treatment response using EEG, and better elucidate the replicability of specific markers. Additionally, it is speculated that greater performance was observed in rTMS models, since EEG is assessing neural networks more likely to be directly targeted by rTMS, comprising electrical activity primarily near the surface of the cortex. Prospectively, there is a need for models that examine the comparative effectiveness of multiple treatments across the same patients. However, this will require a thoughtful consideration towards cumulative treatment effects, and whether washout periods between treatments should be utilised. Regardless, longitudinal cross-over trials comparing multiple treatments across the same group of patients will be an important prerequisite step to both facilitate precision psychiatry and identify generalizable physiological predictors of response between and across treatment options.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gmc完成签到 ,获得积分10
5秒前
花花2024完成签到 ,获得积分10
10秒前
Mr.Ren完成签到,获得积分10
14秒前
17秒前
轩辕中蓝完成签到 ,获得积分10
41秒前
hyxu678完成签到,获得积分10
43秒前
朱先生完成签到 ,获得积分10
47秒前
aniu完成签到,获得积分10
1分钟前
诺一44完成签到,获得积分10
1分钟前
1分钟前
诺一44发布了新的文献求助10
1分钟前
fogsea完成签到,获得积分0
1分钟前
南宫丽完成签到 ,获得积分10
1分钟前
John给John的求助进行了留言
1分钟前
故意的问安完成签到 ,获得积分10
1分钟前
安小磊完成签到 ,获得积分10
1分钟前
1分钟前
huanghe完成签到,获得积分10
1分钟前
贰鸟应助科研通管家采纳,获得10
1分钟前
贰鸟应助科研通管家采纳,获得10
1分钟前
1分钟前
蜗牛0356完成签到 ,获得积分10
1分钟前
王贺帅发布了新的文献求助10
1分钟前
znchick发布了新的文献求助10
2分钟前
尉迟明风完成签到 ,获得积分10
2分钟前
2分钟前
月上柳梢头A1完成签到,获得积分10
2分钟前
王贺帅完成签到,获得积分10
2分钟前
myq完成签到 ,获得积分10
2分钟前
研友_VZG7GZ应助znchick采纳,获得20
2分钟前
liufan完成签到 ,获得积分10
2分钟前
明亮的代灵完成签到 ,获得积分10
2分钟前
zzgpku完成签到,获得积分0
2分钟前
2分钟前
2分钟前
znchick发布了新的文献求助20
2分钟前
even完成签到 ,获得积分10
3分钟前
科研通AI5应助znchick采纳,获得10
3分钟前
share完成签到 ,获得积分10
3分钟前
3分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Robot-supported joining of reinforcement textiles with one-sided sewing heads 780
A Student's Guide to Developmental Psychology 600
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4156118
求助须知:如何正确求助?哪些是违规求助? 3691967
关于积分的说明 11658939
捐赠科研通 3383198
什么是DOI,文献DOI怎么找? 1856340
邀请新用户注册赠送积分活动 917831
科研通“疑难数据库(出版商)”最低求助积分说明 831161