Generative Adversarial Network for Desert Seismic Data Denoising

计算机科学 降噪 鉴别器 噪音(视频) 卷积神经网络 人工智能 模式识别(心理学) 发电机(电路理论) 功率(物理) 电信 图像(数学) 物理 量子力学 探测器
作者
Hongzhou Wang,Yue Li,Xintong Dong
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:59 (8): 7062-7075 被引量:52
标识
DOI:10.1109/tgrs.2020.3030692
摘要

Seismic exploration is a kind of exploration method for oil and gas resources. However, the disturbance of numerous random noise will decrease the quality and signal-to-noise ratio (SNR) of real seismic records, which brings difficulties to the following works of processing and interpretation. The seismic records of desert region pose a particular problem because of the strong energy noise and the spectrum overlapping between effective signals and random noise. Recent research works demonstrate that a convolutional neural network (CNN) can increase the SNR of seismic records. The optimization of denoising methods based on CNN is principally driven by the loss functions that largely focus on minimizing the mean-squared reconstruction error between denoising records and theoretical pure records. The denoising results estimated by the CNN model are often lacking the perfection of the signal structure. Therefore, when processing seismic records with low SNR, the denoising results often have a lack of effective signal in some traces, which leads to the poor continuity of events. In order to solve this problem, we adopt the strategy of generative adversarial network (GAN) to construct a GAN for denoising. It is divided into two parts: the generator (the denoising network based on CNN) is used to remove noise, while the discriminator is used to guide the generator to restore the structure information of effective signals. The generator and discriminator enhance the performance of each other through adversarial training, and the generator after adversarial training can greatly recover events and suppress random noise in synthetic and real desert seismic data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
1秒前
ding应助Woshikeyandawang采纳,获得10
2秒前
3秒前
3秒前
4秒前
隐形曼青应助Sea_U采纳,获得10
4秒前
5秒前
wang发布了新的文献求助10
6秒前
Lin应助欧气青年采纳,获得10
7秒前
等天黑完成签到,获得积分10
7秒前
BBC完成签到,获得积分10
7秒前
8秒前
研友_LOK59L发布了新的文献求助10
11秒前
LDDLleor完成签到,获得积分10
11秒前
11秒前
c123完成签到 ,获得积分10
13秒前
13秒前
美好斓发布了新的文献求助10
14秒前
14秒前
yier发布了新的文献求助10
14秒前
15秒前
万能图书馆应助BBC采纳,获得10
15秒前
xunxun完成签到,获得积分10
17秒前
喵喵发布了新的文献求助10
18秒前
xunxun发布了新的文献求助10
19秒前
19秒前
20秒前
TYQ完成签到,获得积分10
20秒前
21秒前
梦在远方完成签到 ,获得积分0
21秒前
汉堡包应助xhy采纳,获得10
21秒前
Xiao发布了新的文献求助10
22秒前
李健的小迷弟应助Aries采纳,获得10
23秒前
Cu完成签到 ,获得积分10
24秒前
欧气青年完成签到,获得积分10
25秒前
羽毛发布了新的文献求助10
25秒前
25秒前
lalala完成签到 ,获得积分20
26秒前
wang完成签到,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5574799
求助须知:如何正确求助?哪些是违规求助? 4660761
关于积分的说明 14732204
捐赠科研通 4600781
什么是DOI,文献DOI怎么找? 2525042
邀请新用户注册赠送积分活动 1495281
关于科研通互助平台的介绍 1465052