Extended depth-of-field in holographic imaging using deep-learning-based autofocusing and phase recovery

全息术 人工智能 光学(聚焦) 计算机科学 样品(材料) 卷积神经网络 景深 计算机视觉 深度学习 迭代重建 对象(语法) 领域(数学) 相(物质) 点(几何) 数字全息术 体积热力学 图像(数学) 光学 数学 物理 热力学 量子力学 纯数学 几何学
作者
Yichen Wu,Yair Rivenson,Yibo Zhang,Zhensong Wei,Harun Günaydın,Xing Lin,Aydogan Özcan
出处
期刊:Optica [Optica Publishing Group]
卷期号:5 (6): 704-704 被引量:294
标识
DOI:10.1364/optica.5.000704
摘要

Holography encodes the three dimensional (3D) information of a sample in the form of an intensity-only recording. However, to decode the original sample image from its hologram(s), auto-focusing and phase-recovery are needed, which are in general cumbersome and time-consuming to digitally perform. Here we demonstrate a convolutional neural network (CNN) based approach that simultaneously performs auto-focusing and phase-recovery to significantly extend the depth-of-field (DOF) in holographic image reconstruction. For this, a CNN is trained by using pairs of randomly de-focused back-propagated holograms and their corresponding in-focus phase-recovered images. After this training phase, the CNN takes a single back-propagated hologram of a 3D sample as input to rapidly achieve phase-recovery and reconstruct an in focus image of the sample over a significantly extended DOF. This deep learning based DOF extension method is non-iterative, and significantly improves the algorithm time-complexity of holographic image reconstruction from O(nm) to O(1), where n refers to the number of individual object points or particles within the sample volume, and m represents the focusing search space within which each object point or particle needs to be individually focused. These results highlight some of the unique opportunities created by data-enabled statistical image reconstruction methods powered by machine learning, and we believe that the presented approach can be broadly applicable to computationally extend the DOF of other imaging modalities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
2秒前
AHa发布了新的文献求助10
3秒前
Rmshuang应助我爱看文献采纳,获得10
3秒前
云在飞完成签到,获得积分10
3秒前
4秒前
看淡完成签到 ,获得积分10
5秒前
5秒前
NexusExplorer应助科研通管家采纳,获得10
5秒前
爆米花应助科研通管家采纳,获得10
5秒前
Ava应助科研通管家采纳,获得10
6秒前
wanci应助科研通管家采纳,获得10
6秒前
在水一方应助科研通管家采纳,获得10
6秒前
顾矜应助科研通管家采纳,获得10
6秒前
共享精神应助科研通管家采纳,获得10
6秒前
Lucas应助科研通管家采纳,获得10
6秒前
华仔应助蒙豆儿采纳,获得10
6秒前
JamesPei应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
深情安青应助科研通管家采纳,获得10
7秒前
小蘑菇应助科研通管家采纳,获得10
7秒前
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
领导范儿应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
7秒前
科研通AI5应助nini采纳,获得10
7秒前
子车茗应助Siri采纳,获得20
8秒前
9秒前
ATGMINT发布了新的文献求助10
9秒前
cui123完成签到 ,获得积分10
9秒前
nanci完成签到,获得积分10
10秒前
Phantasyice完成签到,获得积分10
10秒前
星辰大海应助容言采纳,获得30
11秒前
成就映秋发布了新的文献求助10
11秒前
科研通AI5应助李松采纳,获得10
12秒前
hzh完成签到,获得积分20
12秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805783
求助须知:如何正确求助?哪些是违规求助? 3350709
关于积分的说明 10350220
捐赠科研通 3066573
什么是DOI,文献DOI怎么找? 1683863
邀请新用户注册赠送积分活动 809190
科研通“疑难数据库(出版商)”最低求助积分说明 765407