已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

DNA methylation data‐based prognosis‐subtype distinctions in patients with esophageal carcinoma by bioinformatic studies

甲基化 DNA甲基化 表观遗传学 基因 发起人 DNA 生物 癌症研究 肿瘤科 遗传学 医学 基因表达
作者
Hui Chen,Qin Qin,Zhipeng Xu,Tingting Chen,Xijuan Yao,Bing Xu,Xinchen Sun
出处
期刊:Journal of Cellular Physiology [Wiley]
卷期号:236 (3): 2126-2138 被引量:6
标识
DOI:10.1002/jcp.29999
摘要

Abstract Esophageal carcinoma (ESCA) is caused by the accumulation of genetic and epigenetic alterations in esophageal mucosa. Of note, the earliest and the most frequent molecular behavior in the complicated pathogenesis of ESCA is DNA methylation. In the present study, we downloaded data of 178 samples from The Cancer Genome Atlas (TCGA) database to explore specific DNA methylation sites that affect prognosis in ESCA patients. Consequently, we identified 1,098 CpGs that were significantly associated with patient prognosis. Hence, these CpGs were used for consensus clustering of the 178 samples into seven clusters. Specifically, the samples in each group were different in terms of age, gender, tumor stage, histological type, metastatic status, and patient prognosis. We further analyzed 1,224 genes in the corresponding promoter regions of the 1,098 methylation sites, and enriched these genes in biological pathways with close correlation to cellular metabolism, enzymatic synthesis, and mitochondrial autophagy. In addition, nine representative specific methylation sites were screened using the weighted gene coexpression network analysis. Finally, a prognostic prediction model for ESCA patients was built in both training and validation cohorts. In summary, our study revealed that classification based on specific DNA methylation sites could reflect ESCA heterogeneity and contribute to the improvement of individualized treatment and precise prognostic prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
花开富贵完成签到 ,获得积分10
2秒前
醒醒关注了科研通微信公众号
2秒前
周布丁完成签到,获得积分10
3秒前
jenningseastera应助李瑞鹏采纳,获得30
3秒前
封迎松完成签到 ,获得积分10
4秒前
Z17应助科研通管家采纳,获得10
9秒前
乐乐应助科研通管家采纳,获得10
9秒前
Z17应助科研通管家采纳,获得10
9秒前
Jasper应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
Z17应助科研通管家采纳,获得10
9秒前
wy.he应助科研通管家采纳,获得10
9秒前
10秒前
KokuSeito完成签到 ,获得积分10
12秒前
ljj301完成签到,获得积分20
13秒前
拉基发布了新的文献求助10
13秒前
想上985完成签到 ,获得积分10
13秒前
量子星尘发布了新的文献求助10
13秒前
伶俐的血茗完成签到 ,获得积分10
14秒前
Terry发布了新的文献求助10
15秒前
16秒前
18秒前
19秒前
21秒前
23秒前
可爱的函函应助Terry采纳,获得10
24秒前
Heney发布了新的文献求助10
24秒前
25秒前
26秒前
Friday发布了新的文献求助10
28秒前
ding应助dalibaba采纳,获得10
29秒前
Hello应助张萌采纳,获得10
30秒前
30秒前
热带蚂蚁完成签到 ,获得积分10
32秒前
ling凌波发布了新的文献求助10
33秒前
123发布了新的文献求助10
33秒前
伍兹发布了新的文献求助10
36秒前
香蕉奇迹发布了新的文献求助10
36秒前
Friday完成签到,获得积分10
39秒前
xmh完成签到,获得积分10
39秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 500
Building Quantum Computers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3865566
求助须知:如何正确求助?哪些是违规求助? 3407973
关于积分的说明 10656268
捐赠科研通 3131990
什么是DOI,文献DOI怎么找? 1727446
邀请新用户注册赠送积分活动 832314
科研通“疑难数据库(出版商)”最低求助积分说明 780189