亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A deep learning CNN architecture applied in smart near-infrared analysis of water pollution for agricultural irrigation resources

卷积神经网络 环境科学 决策树 联营 遥感 计算机科学 人工智能 地质学
作者
Huazhou Chen,An Chen,Lili Xu,Hai Xie,Hanli Qiao,Qinyong Lin,Ken Cai
出处
期刊:Agricultural Water Management [Elsevier BV]
卷期号:240: 106303-106303 被引量:289
标识
DOI:10.1016/j.agwat.2020.106303
摘要

Water is a natural resource for agricultural irrigation. Recycling use of water is important in terms of resource conservation and is good for sustainable development of the ecological environment. The wastewater from daily living and industrial production contains various chemicals that are supposed as pollutants leading to the decline of water quality. For the demand of water protection and recycling, the assessment of water pollution level should be evaluated. An effective scientific technique is required for rapid detection of water pollution. Near-infrared (NIR) spectroscopy is a modern technology suitable for rapid detection of agricultural targets. For monitoring the agricultural water resource, the NIR modeling methods are required to be smart and artificially controlled to solve the issues when we confront a considerable number of data or a dynamic situation. In this study, an improved convolutional neural network (CNN) architecture was designed for a deep calibration on the NIR data. The architecture is shallow, simply constructed with one convolution layer and one pooling layer. The decision tree algorithm was employed in the pooling layer for extracting the informative features in a data driven manner. The CNN architecture was trained by combined tuning of multiple parameters in different layers. The convolution filters, the decision tree branches and the hidden neurons in the fully connected layer were automatically adaptive with fidelity to the measured data. A CNN calibration model for NIR quantitatively determination of water pollution level was then established and optimized in deep learning mode, and eventually improved the NIR prediction accuracy. Prospectively, the designed shallow CNN architecture is feasible to be used for establishing intelligent spectroscopic models for evaluating the level of water pollution, and is expected to provide smart technical support in dealing with the issues of water recycling and conservation for agricultural cultivation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冰冰发布了新的文献求助10
2秒前
Lyl完成签到 ,获得积分10
6秒前
11秒前
BetterH完成签到 ,获得积分10
12秒前
么么么发布了新的文献求助10
17秒前
wang5945完成签到 ,获得积分10
17秒前
17秒前
22秒前
非泥完成签到,获得积分10
24秒前
LuckYeaH6发布了新的文献求助10
24秒前
27秒前
30秒前
11关注了科研通微信公众号
33秒前
想吃芝士荔枝烤鱼完成签到,获得积分10
36秒前
39秒前
整齐乐荷完成签到,获得积分10
42秒前
夏天发布了新的文献求助10
44秒前
45秒前
活泼的眼神完成签到,获得积分10
48秒前
冰冰完成签到,获得积分10
50秒前
么么么完成签到 ,获得积分10
50秒前
橙子发布了新的文献求助10
51秒前
11发布了新的文献求助10
52秒前
54秒前
科研小南完成签到 ,获得积分10
54秒前
chenjzhuc应助绝尘采纳,获得20
55秒前
jyy应助科研通管家采纳,获得10
58秒前
58秒前
深情安青应助科研通管家采纳,获得10
59秒前
jyy应助科研通管家采纳,获得10
59秒前
汉堡包应助科研通管家采纳,获得10
59秒前
1分钟前
jason0023完成签到,获得积分10
1分钟前
1分钟前
Raunio完成签到,获得积分10
1分钟前
热带蚂蚁完成签到 ,获得积分10
1分钟前
octopus完成签到,获得积分10
1分钟前
碳酸芙兰完成签到,获得积分10
1分钟前
打打应助jjj采纳,获得10
1分钟前
fei完成签到 ,获得积分10
1分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800880
求助须知:如何正确求助?哪些是违规求助? 3346386
关于积分的说明 10329180
捐赠科研通 3062834
什么是DOI,文献DOI怎么找? 1681207
邀请新用户注册赠送积分活动 807462
科研通“疑难数据库(出版商)”最低求助积分说明 763702