亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An Anchor-Free Method Based on Feature Balancing and Refinement Network for Multiscale Ship Detection in SAR Images

计算机科学 合成孔径雷达 最小边界框 人工智能 可扩展性 特征(语言学) 目标检测 特征提取 跳跃式监视 特征学习 判别式 棱锥(几何) 计算机视觉 模式识别(心理学) 图像(数学) 数据库 光学 物理 哲学 语言学
作者
Jiamei Fu,Xian Sun,Zhirui Wang,Kun Fu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:59 (2): 1331-1344 被引量:215
标识
DOI:10.1109/tgrs.2020.3005151
摘要

Recently, deep-learning methods have been successfully applied to the ship detection in the synthetic aperture radar (SAR) images. It is still a great challenge to detect multiscale SAR ships due to the broad diversity of the scales and the strong interference of the inshore background. Most prevalent approaches are based on the anchor mechanism that uses the predefined anchors to search the possible regions containing objects. However, the anchor settings have a great impact on their detection performance as well as the generalization ability. Furthermore, considering the sparsity of the ships, most anchors are redundant and will lead to the computation increase. In this article, a novel detection method named feature balancing and refinement network (FBR-Net) is proposed. First, our method eliminates the effect of anchors by adopting a general anchor-free strategy that directly learns the encoded bounding boxes. Second, we leverage the proposed attention-guided balanced pyramid to balance semantically the multiple features across different levels. It can help the detector learn more information about the small-scale ships in complex scenes. Third, considering the SAR imaging mechanism, the interference near the ship boundary with the similar scattering power probably affects the localization accuracy because of feature misalignment. To tackle the localization issue, a feature-refinement module is proposed to refine the object features and guide the semantic enhancement. Finally, extensive experiments are conducted to show the effectiveness of our FBR-Net compared with the general anchor-free baseline. The detection results on the SAR ship detection dataset (SSDD) and AIR-SARShip-1.0 dataset illustrate that our method achieves the state-of-the-art performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助科研通管家采纳,获得10
18秒前
CodeCraft应助科研通管家采纳,获得10
18秒前
18秒前
26秒前
爱撒娇的沛凝完成签到 ,获得积分10
27秒前
咕咕完成签到 ,获得积分10
46秒前
47秒前
1分钟前
1分钟前
1分钟前
Sunny完成签到 ,获得积分10
1分钟前
2分钟前
光亮语梦完成签到 ,获得积分10
2分钟前
2分钟前
AllRightReserved完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
wykion完成签到,获得积分0
3分钟前
3分钟前
苻谷丝发布了新的文献求助30
3分钟前
苻谷丝完成签到,获得积分10
4分钟前
NEM嬛嬛驾到完成签到,获得积分10
4分钟前
韦霁滢完成签到,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
taku完成签到 ,获得积分10
4分钟前
希望天下0贩的0应助Andy.采纳,获得10
5分钟前
5分钟前
caca完成签到,获得积分0
5分钟前
核桃应助morena采纳,获得30
5分钟前
5分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798486
求助须知:如何正确求助?哪些是违规求助? 3343957
关于积分的说明 10318137
捐赠科研通 3060562
什么是DOI,文献DOI怎么找? 1679619
邀请新用户注册赠送积分活动 806731
科研通“疑难数据库(出版商)”最低求助积分说明 763314