光致发光
剂量计
发光
激进的
激发态
电离辐射
光化学
化学
材料科学
纳米技术
光电子学
辐照
原子物理学
有机化学
辐射
光学
物理
核物理学
作者
Hanzhou Liu,Haoming Qin,Nan‐Nan Shen,Siqi Yan,Yaxing Wang,Xuemiao Yin,Xinjian Chen,Chao Zhang,Xing Dai,Ruhong Zhou,Xiaoping Ouyang,Zhifang Chai,Shuao Wang
标识
DOI:10.1002/anie.202006380
摘要
Abstract Radio‐photoluminescence (RPL) materials display a distinct radiation‐induced permanent luminescence center, and therefore find application in the detection of ionizing radiation. The current inventory of RPL materials, which were discovered by serendipity, has been limited to a small number of metal‐ion‐doped inorganic materials. Here we document the RPL of a metal–organic framework (MOF) for the first time: X‐ray induced free radicals are accumulated on the organic linker and are subsequently stabilized in the conjugated fragment in the structure, while the metal center acts as the X‐ray attenuator. These radicals afford new emission features in both UV‐excited and X‐ray excited luminescence spectra, making it possible to establish linear relationships between the radiation dose and the normalized intensity of the new emission feature. The MOF‐based RPL materials exhibit advantages in terms of the dose detection range, reusability, emission stability, and energy threshold. Based on a comprehensive electronic structure and energy diagram study, the rational design and a substantial expansion of candidate RPL materials can be anticipated.
科研通智能强力驱动
Strongly Powered by AbleSci AI