Multiple-Window Anomaly Detection for Hyperspectral Imagery

高光谱成像 异常检测 计算机科学 多光谱图像 探测器 窗口(计算) 异常(物理) 人工智能 协方差矩阵 模式识别(心理学) 计算机视觉 遥感 数据挖掘 地理 算法 物理 凝聚态物理 电信 操作系统
作者
Wei‐Min Liu,Chein‐I Chang
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:6 (2): 644-658 被引量:103
标识
DOI:10.1109/jstars.2013.2239959
摘要

Due to advances of hyperspectral imaging sensors many unknown and subtle targets that cannot be resolved by multispectral imagery can now be uncovered by hyperspectral imagery. These targets generally cannot be identified by visual inspection or prior knowledge, but yet provide crucial and vital information for data exploitation. One such type of targets is anomalies which have recently received considerable interest in hyperspectral image analysis. Many anomaly detectors have been developed and most of them are based on the most widely used Reed-Yu's algorithm, called RX detector (RXD). However, a key issue in making RX detector-like anomaly detectors effective is how to effectively utilize the spectral information provided by data samples, e.g., sample covariance matrix used by RXD. Recently, a dual window-based eigen separation transform (DWEST) was developed to address this issue. This paper extends the concept of DWEST to develop a new approach, to be called multiple-window anomaly detection (MWAD) by making use of multiple windows to perform anomaly detection adaptively. As a result, MWAD is able to detect anomalies of various sizes using multiple windows so that local spectral variations can be characterized and extracted by different window sizes. By virtue of this newly developed MWAD, many existing RXD-like anomaly detectors including DWEST can be derived as special cases of MWAD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助莫天枫采纳,获得10
刚刚
1秒前
NexusExplorer应助CaiyunZhao采纳,获得10
1秒前
1秒前
zcl应助YHK采纳,获得50
2秒前
jianjiao发布了新的文献求助10
2秒前
单切切发布了新的文献求助10
2秒前
慕青应助梅洛采纳,获得10
2秒前
rues011发布了新的文献求助10
2秒前
搜集达人应助20030909采纳,获得10
3秒前
4秒前
在水一方应助juan采纳,获得10
4秒前
4秒前
4秒前
hnlgdx发布了新的文献求助10
5秒前
领导范儿应助plh采纳,获得50
5秒前
6秒前
桃子发布了新的文献求助10
6秒前
6秒前
Akim应助quan采纳,获得10
6秒前
铃铃铛发布了新的文献求助10
7秒前
程嘉玲发布了新的文献求助10
7秒前
Christine_完成签到,获得积分10
8秒前
xiaoma完成签到,获得积分10
8秒前
8秒前
VIAI发布了新的文献求助10
8秒前
9秒前
夙念完成签到 ,获得积分10
9秒前
9秒前
高兴不尤完成签到,获得积分10
9秒前
简单发布了新的文献求助10
10秒前
11秒前
super发布了新的文献求助10
11秒前
13秒前
13秒前
露宝完成签到,获得积分10
14秒前
HaohaoLi完成签到,获得积分10
14秒前
gura发布了新的文献求助10
14秒前
15秒前
JamesPei应助rues011采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
茶艺师试题库(初级、中级、高级、技师、高级技师) 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertebrate Palaeontology, 5th Edition 560
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5362568
求助须知:如何正确求助?哪些是违规求助? 4492405
关于积分的说明 13987069
捐赠科研通 4395705
什么是DOI,文献DOI怎么找? 2414678
邀请新用户注册赠送积分活动 1407358
关于科研通互助平台的介绍 1381981