Dislocation nucleation governed softening and maximum strength in nano-twinned metals

成核 位错 材料科学 部分位错 凝聚态物理 晶体孪晶 晶界 可塑性 微晶 位错蠕变 软化 变形机理 复合材料 结晶学 变形(气象学) 冶金 微观结构 化学 物理 热力学
作者
Xiaoyan Li,Yujie Wei,Lei Lu,K. Lu,Huajian Gao
出处
期刊:Nature [Nature Portfolio]
卷期号:464 (7290): 877-880 被引量:1074
标识
DOI:10.1038/nature08929
摘要

In conventional metals, there is plenty of space for dislocations-line defects whose motion results in permanent material deformation-to multiply, so that the metal strengths are controlled by dislocation interactions with grain boundaries and other obstacles. For nanostructured materials, in contrast, dislocation multiplication is severely confined by the nanometre-scale geometries so that continued plasticity can be expected to be source-controlled. Nano-grained polycrystalline materials were found to be strong but brittle, because both nucleation and motion of dislocations are effectively suppressed by the nanoscale crystallites. Here we report a dislocation-nucleation-controlled mechanism in nano-twinned metals in which there are plenty of dislocation nucleation sites but dislocation motion is not confined. We show that dislocation nucleation governs the strength of such materials, resulting in their softening below a critical twin thickness. Large-scale molecular dynamics simulations and a kinetic theory of dislocation nucleation in nano-twinned metals show that there exists a transition in deformation mechanism, occurring at a critical twin-boundary spacing for which strength is maximized. At this point, the classical Hall-Petch type of strengthening due to dislocation pile-up and cutting through twin planes switches to a dislocation-nucleation-controlled softening mechanism with twin-boundary migration resulting from nucleation and motion of partial dislocations parallel to the twin planes. Most previous studies did not consider a sufficient range of twin thickness and therefore missed this strength-softening regime. The simulations indicate that the critical twin-boundary spacing for the onset of softening in nano-twinned copper and the maximum strength depend on the grain size: the smaller the grain size, the smaller the critical twin-boundary spacing, and the higher the maximum strength of the material.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
勇铁森完成签到,获得积分10
刚刚
夏夏发布了新的文献求助10
刚刚
学霸土豆发布了新的文献求助10
刚刚
xx完成签到 ,获得积分10
1秒前
1秒前
lulu123发布了新的文献求助10
1秒前
2秒前
3秒前
4秒前
orixero应助cjhAshley采纳,获得10
5秒前
小皮完成签到,获得积分10
6秒前
华仔应助邵启轩采纳,获得10
6秒前
友好白凡发布了新的文献求助10
6秒前
CHEN发布了新的文献求助10
7秒前
GQ完成签到,获得积分10
7秒前
充电宝应助toto采纳,获得10
8秒前
anz关闭了anz文献求助
9秒前
SILENCE发布了新的文献求助10
9秒前
卓卓发布了新的文献求助10
9秒前
10秒前
10秒前
FU完成签到,获得积分20
11秒前
乐乐应助小五采纳,获得10
12秒前
12秒前
13秒前
14秒前
周Z发布了新的文献求助10
15秒前
冰之完成签到,获得积分10
16秒前
16秒前
虚幻树叶发布了新的文献求助10
16秒前
17秒前
17秒前
cjhAshley发布了新的文献求助10
18秒前
19秒前
七栀发布了新的文献求助10
20秒前
Zyra发布了新的文献求助10
20秒前
11发布了新的文献求助10
20秒前
Liii发布了新的文献求助10
21秒前
22秒前
毛球发布了新的文献求助10
22秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Robot-supported joining of reinforcement textiles with one-sided sewing heads 780
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
镇江南郊八公洞林区鸟类生态位研究 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4154029
求助须知:如何正确求助?哪些是违规求助? 3689941
关于积分的说明 11656161
捐赠科研通 3382195
什么是DOI,文献DOI怎么找? 1855967
邀请新用户注册赠送积分活动 917650
科研通“疑难数据库(出版商)”最低求助积分说明 831083