Dislocation nucleation governed softening and maximum strength in nano-twinned metals

成核 位错 材料科学 部分位错 凝聚态物理 晶体孪晶 晶界 可塑性 微晶 位错蠕变 软化 变形机理 复合材料 结晶学 变形(气象学) 冶金 微观结构 化学 物理 热力学
作者
Xiaoyan Li,Yujie Wei,Lei Lu,K. Lu,Huajian Gao
出处
期刊:Nature [Nature Portfolio]
卷期号:464 (7290): 877-880 被引量:1074
标识
DOI:10.1038/nature08929
摘要

In conventional metals, there is plenty of space for dislocations-line defects whose motion results in permanent material deformation-to multiply, so that the metal strengths are controlled by dislocation interactions with grain boundaries and other obstacles. For nanostructured materials, in contrast, dislocation multiplication is severely confined by the nanometre-scale geometries so that continued plasticity can be expected to be source-controlled. Nano-grained polycrystalline materials were found to be strong but brittle, because both nucleation and motion of dislocations are effectively suppressed by the nanoscale crystallites. Here we report a dislocation-nucleation-controlled mechanism in nano-twinned metals in which there are plenty of dislocation nucleation sites but dislocation motion is not confined. We show that dislocation nucleation governs the strength of such materials, resulting in their softening below a critical twin thickness. Large-scale molecular dynamics simulations and a kinetic theory of dislocation nucleation in nano-twinned metals show that there exists a transition in deformation mechanism, occurring at a critical twin-boundary spacing for which strength is maximized. At this point, the classical Hall-Petch type of strengthening due to dislocation pile-up and cutting through twin planes switches to a dislocation-nucleation-controlled softening mechanism with twin-boundary migration resulting from nucleation and motion of partial dislocations parallel to the twin planes. Most previous studies did not consider a sufficient range of twin thickness and therefore missed this strength-softening regime. The simulations indicate that the critical twin-boundary spacing for the onset of softening in nano-twinned copper and the maximum strength depend on the grain size: the smaller the grain size, the smaller the critical twin-boundary spacing, and the higher the maximum strength of the material.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
没有人完成签到,获得积分10
刚刚
开朗的钻石完成签到,获得积分10
1秒前
藜颵发布了新的文献求助10
2秒前
12完成签到,获得积分10
3秒前
研友_8yPY0Z完成签到,获得积分10
4秒前
Kakaa完成签到 ,获得积分10
4秒前
情怀应助cotton采纳,获得10
5秒前
陈为东发布了新的文献求助10
6秒前
zzc完成签到,获得积分20
8秒前
8秒前
9秒前
笑点低绿竹完成签到 ,获得积分10
10秒前
YL完成签到,获得积分10
12秒前
zzc发布了新的文献求助10
13秒前
张丹兰完成签到,获得积分10
14秒前
坚定的诗双完成签到,获得积分10
14秒前
东伯雪鹰发布了新的文献求助10
15秒前
陈为东完成签到,获得积分20
15秒前
15秒前
科研通AI2S应助陈为东采纳,获得10
19秒前
SASI完成签到 ,获得积分10
19秒前
HJJHJH发布了新的文献求助10
20秒前
GSQ发布了新的文献求助10
22秒前
科研通AI5应助cyy采纳,获得10
23秒前
24秒前
花渐开完成签到,获得积分10
24秒前
朴诗雅Yay发布了新的文献求助10
27秒前
北楠完成签到,获得积分10
27秒前
1461644768完成签到,获得积分10
28秒前
28秒前
28秒前
29秒前
危机的绯完成签到,获得积分10
30秒前
Akim应助花渐开采纳,获得10
30秒前
31秒前
31秒前
boshi发布了新的文献求助10
32秒前
温婉的夏兰完成签到,获得积分10
33秒前
小唐发布了新的文献求助10
33秒前
34秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781693
求助须知:如何正确求助?哪些是违规求助? 3327300
关于积分的说明 10230275
捐赠科研通 3042139
什么是DOI,文献DOI怎么找? 1669791
邀请新用户注册赠送积分活动 799374
科研通“疑难数据库(出版商)”最低求助积分说明 758792