DU145型
纳米颗粒
PLGA公司
氧化铁纳米粒子
材料科学
细胞毒性
化学
纳米技术
癌细胞
LNCaP公司
医学
生物化学
癌症
内科学
体外
作者
Zahra Hajikarimi,Samideh Khoei,Sepideh Khoee,Seied Rabi Mahdavi
标识
DOI:10.1109/tnb.2014.2328868
摘要
The purpose of this study was to investigate the uptake and cytotoxic effects of magnetic poly lactic-co-glycolic acid (PLGA)-coated iron oxide nanoparticles as a carrier of 5-fluorouracil (5-FU) and X-ray on the level of proliferation capacity of DU145 prostate carcinoma cell line in monolayer culture. Following monolayer culture, DU 145 cells were treated with different concentrations of 5-FU or 5-FU loaded nanoparticles for 24 h and 2Gy X-ray (6 Mega-voltage (MV)). The rate of nanoparticles penetration was then measured using atomic adsorption spectroscopy (AAS). The cytotoxicity effect of these nanoparticles with/ without X-ray radiation was evaluated using colony formation assay. Spectroscopy results showed that iron content and therefore the cellular uptake of 5-FU loaded nanoparticles increased with increasing nanoparticle concentrations. Further, the proliferation capacity of the cells decreased with the increase of 5-FU and 5- FU loaded nanoparticle concentrations in combination with X-ray radiation. However the extent of reduction in colony number following treatment with 5-FU-loaded nanoparticles in combination with 2Gy of megavoltage X-ray radiation was significantly more than for free 5-FU. Thus, drug-loaded nanoparticles could deliver 5-FU more efficiently into the cells. PLGA coated iron oxide nanoparticles are therefore effective drug delivery vehicles for 5-FU. PLGA coated iron oxide nanoparticles are biocompatible and this coating is an appropriate surface that can penetrate into the cells.
科研通智能强力驱动
Strongly Powered by AbleSci AI