同步(交流)
控制理论(社会学)
计算机科学
简单(哲学)
人工神经网络
耦合强度
混沌同步
混乱的
噪音(视频)
连接(主束)
联轴节(管道)
不变(物理)
差速器(机械装置)
基质(化学分析)
拓扑(电路)
数学
频道(广播)
工程类
人工智能
物理
控制(管理)
航空航天工程
几何学
凝聚态物理
计算机网络
数学物理
材料科学
复合材料
哲学
图像(数学)
组合数学
认识论
机械工程
出处
期刊:Chaos
[American Institute of Physics]
日期:2006-03-01
卷期号:16 (1): 013133-013133
被引量:388
摘要
In this paper, based on the invariant principle of functional differential equations, a simple, analytical, and rigorous adaptive feedback scheme is proposed for the synchronization of almost all kinds of coupled identical neural networks with time-varying delay, which can be chaotic, periodic, etc. We do not assume that the concrete values of the connection weight matrix and the delayed connection weight matrix are known. We show that two coupled identical neural networks with or without time-varying delay can achieve synchronization by enhancing the coupling strength dynamically. The update gain of coupling strength can be properly chosen to adjust the speed of achieving synchronization. Also, it is quite robust against the effect of noise and simple to implement in practice. In addition, numerical simulations are given to show the effectiveness of the proposed synchronization method.
科研通智能强力驱动
Strongly Powered by AbleSci AI