亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models

半参数模型 数学 边际似然 估计员 最大似然 半参数回归 计量经济学 限制最大似然 似然函数 期望最大化算法 最大似然序列估计 应用数学 统计 估计理论 估计 似然原理 拟极大似然 渐近分布 似然比检验 广义线性模型 经济 参数统计 管理
作者
Simon N. Wood
出处
期刊:Journal of The Royal Statistical Society Series B-statistical Methodology [Oxford University Press]
卷期号:73 (1): 3-36 被引量:3997
标识
DOI:10.1111/j.1467-9868.2010.00749.x
摘要

Summary.  Recent work by Reiss and Ogden provides a theoretical basis for sometimes preferring restricted maximum likelihood (REML) to generalized cross-validation (GCV) for smoothing parameter selection in semiparametric regression. However, existing REML or marginal likelihood (ML) based methods for semiparametric generalized linear models (GLMs) use iterative REML or ML estimation of the smoothing parameters of working linear approximations to the GLM. Such indirect schemes need not converge and fail to do so in a non-negligible proportion of practical analyses. By contrast, very reliable prediction error criteria smoothing parameter selection methods are available, based on direct optimization of GCV, or related criteria, for the GLM itself. Since such methods directly optimize properly defined functions of the smoothing parameters, they have much more reliable convergence properties. The paper develops the first such method for REML or ML estimation of smoothing parameters. A Laplace approximation is used to obtain an approximate REML or ML for any GLM, which is suitable for efficient direct optimization. This REML or ML criterion requires that Newton–Raphson iteration, rather than Fisher scoring, be used for GLM fitting, and a computationally stable approach to this is proposed. The REML or ML criterion itself is optimized by a Newton method, with the derivatives required obtained by a mixture of implicit differentiation and direct methods. The method will cope with numerical rank deficiency in the fitted model and in fact provides a slight improvement in numerical robustness on the earlier method of Wood for prediction error criteria based smoothness selection. Simulation results suggest that the new REML and ML methods offer some improvement in mean-square error performance relative to GCV or Akaike's information criterion in most cases, without the small number of severe undersmoothing failures to which Akaike's information criterion and GCV are prone. This is achieved at the same computational cost as GCV or Akaike's information criterion. The new approach also eliminates the convergence failures of previous REML- or ML-based approaches for penalized GLMs and usually has lower computational cost than these alternatives. Example applications are presented in adaptive smoothing, scalar on function regression and generalized additive model selection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
诸乘风完成签到 ,获得积分10
5秒前
37秒前
44秒前
zjz发布了新的文献求助10
47秒前
zjz完成签到,获得积分10
54秒前
1分钟前
sinmden完成签到,获得积分10
1分钟前
sinmden发布了新的文献求助30
1分钟前
Zakariaje完成签到,获得积分10
2分钟前
Owen应助sinmden采纳,获得10
2分钟前
高兴电脑完成签到 ,获得积分10
2分钟前
汉堡包应助科研通管家采纳,获得10
3分钟前
aumppae完成签到,获得积分20
3分钟前
3分钟前
present发布了新的文献求助10
3分钟前
haralee完成签到 ,获得积分10
4分钟前
我是老大应助present采纳,获得10
4分钟前
4分钟前
present完成签到,获得积分10
4分钟前
4分钟前
科研通AI2S应助cc采纳,获得10
5分钟前
彭于晏应助7086z采纳,获得10
5分钟前
冬去春来完成签到 ,获得积分10
5分钟前
5分钟前
7086z发布了新的文献求助10
5分钟前
7086z完成签到,获得积分10
5分钟前
6分钟前
慕青应助好耶采纳,获得10
6分钟前
6分钟前
6分钟前
Claudia发布了新的文献求助10
6分钟前
7分钟前
qiandi完成签到 ,获得积分10
7分钟前
7分钟前
好耶发布了新的文献求助10
7分钟前
7分钟前
nina完成签到 ,获得积分10
8分钟前
8分钟前
8分钟前
8分钟前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808036
求助须知:如何正确求助?哪些是违规求助? 3352717
关于积分的说明 10360120
捐赠科研通 3068739
什么是DOI,文献DOI怎么找? 1685251
邀请新用户注册赠送积分活动 810359
科研通“疑难数据库(出版商)”最低求助积分说明 766045