估计员
网络数据包
传感器融合
参数化复杂度
计算机科学
维数(图论)
线性系统
理论(学习稳定性)
控制理论(社会学)
差异(会计)
噪音(视频)
融合
数学优化
算法
数学
人工智能
统计
机器学习
业务
哲学
数学分析
会计
图像(数学)
语言学
计算机网络
纯数学
控制(管理)
标识
DOI:10.1109/jsen.2012.2227995
摘要
For linear discrete-time stochastic systems measured by multiple sensors, where different sensors are subject to mixed uncertainties of random delays, packet dropouts and/or uncertain observations, the centralized fusion linear optimal estimators in the linear minimum variance sense are presented via the innovation analysis approach, which is a general and useful tool to find the optimal linear estimate. The stability of the proposed estimators is analyzed. A sufficient condition for the existence of the centralized fusion steady-state estimators is given. For a single sensor case, the proposed estimators have the simpler forms and the lower computational cost compared to the existing literature, since a lower dimension parameterized system is constructed and the colored noise is avoided. A simulation example verifies the effectiveness of the proposed estimators.
科研通智能强力驱动
Strongly Powered by AbleSci AI