Recognition of sweet peppers and planning the robotic picking sequence in high-density orchards

人工智能 块(置换群论) 聚类分析 图形 模式识别(心理学) 数学 计算机科学 计算机视觉 几何学 离散数学
作者
Zhengtong Ning,Lufeng Luo,XinMing Ding,Zhiqiang Dong,Bofeng Yang,Jinghui Cai,Weilin Chen,Qinghua Lu
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:196: 106878-106878 被引量:32
标识
DOI:10.1016/j.compag.2022.106878
摘要

To improve the operational efficiency of and to prevent possible collision damage in the near-neighbor multi-target picking of sweet peppers by robots in densely planted complex orchards, this study proposes an algorithm for recognizing sweet peppers and planning a picking sequence called AYDY. First, the convolutional block attention module is embedded into the you only look once model (YOLO-V4), and this combined model is used to recognize and localize sweet peppers. Then, the clustering algorithm for the fast search-and-find of density peaks is improved based on the inflection points and gaps of a decision graph. Sweet peppers with multiple near-neighbor targets are automatically partitioned into picking clusters. An anti-collision picking sequence for a picking cluster is determined based on the experience of experts. The algorithm combines Gaussian distance weights with the winner-takes-all approach as an optic neural filter. In tests, the F1-score of this method for sweet peppers in a densely planted environment was 91.84%, which is a 9.14% improvement compared to YOLO-V4. The average localization accuracy and collision-free harvesting success rate were 89.55% and 90.04%, respectively. The recognition and localization time for a single image was 0.3033 s. The time to plan a picking sequence for a single image was 0.283 s. When the robotic arm harvested 22 and 24 sweet peppers, compared to sequential and stochastic planning, the proposed method had higher collision-free picking rates by 18.18, 18.18, 16.67, and 25 percentage points, respectively. This method can accurately detect sweet peppers, reduce collision damage, and improve picking efficiency in high-density orchard environments. This study may provide technical support for anti-collision picking of sweet peppers by robots.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雨木目完成签到,获得积分10
2秒前
Ava应助Aaron采纳,获得10
2秒前
谨慎天问完成签到,获得积分20
4秒前
4秒前
Akim应助dd采纳,获得10
6秒前
6秒前
脑洞疼应助晴枫3648采纳,获得10
6秒前
夏秋完成签到,获得积分10
7秒前
丘比特应助ao采纳,获得10
7秒前
7秒前
打打应助乐观的镜子采纳,获得10
8秒前
Lucas应助IDHNAPHO采纳,获得10
8秒前
8秒前
9秒前
YOLO完成签到,获得积分10
11秒前
奋斗的鞅发布了新的文献求助10
11秒前
HS完成签到,获得积分10
11秒前
123发布了新的文献求助10
11秒前
小蘑菇应助机灵雨采纳,获得10
12秒前
yalin完成签到,获得积分10
13秒前
DENG发布了新的文献求助10
14秒前
15秒前
javaxixi发布了新的文献求助10
16秒前
17秒前
20秒前
20秒前
感动归尘完成签到,获得积分10
20秒前
Aaron发布了新的文献求助10
21秒前
奋斗的蜗牛应助激流勇进采纳,获得10
21秒前
11发布了新的文献求助10
23秒前
张泽崇发布了新的文献求助10
26秒前
CodeCraft应助xixihaha采纳,获得10
27秒前
华仔应助Ab采纳,获得10
28秒前
29秒前
香蕉觅云应助XMUh采纳,获得20
32秒前
javaxixi完成签到,获得积分20
33秒前
33秒前
机灵雨发布了新的文献求助10
34秒前
37秒前
烟花应助Aaron采纳,获得10
38秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782142
求助须知:如何正确求助?哪些是违规求助? 3327581
关于积分的说明 10232377
捐赠科研通 3042529
什么是DOI,文献DOI怎么找? 1670040
邀请新用户注册赠送积分活动 799600
科研通“疑难数据库(出版商)”最低求助积分说明 758842