Recognition of sweet peppers and planning the robotic picking sequence in high-density orchards

人工智能 块(置换群论) 聚类分析 图形 模式识别(心理学) 数学 计算机科学 计算机视觉 几何学 离散数学
作者
Zhengtong Ning,Lufeng Luo,XinMing Ding,Zhiqiang Dong,Bofeng Yang,Jinghui Cai,Weilin Chen,Qinghua Lu
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:196: 106878-106878 被引量:32
标识
DOI:10.1016/j.compag.2022.106878
摘要

To improve the operational efficiency of and to prevent possible collision damage in the near-neighbor multi-target picking of sweet peppers by robots in densely planted complex orchards, this study proposes an algorithm for recognizing sweet peppers and planning a picking sequence called AYDY. First, the convolutional block attention module is embedded into the you only look once model (YOLO-V4), and this combined model is used to recognize and localize sweet peppers. Then, the clustering algorithm for the fast search-and-find of density peaks is improved based on the inflection points and gaps of a decision graph. Sweet peppers with multiple near-neighbor targets are automatically partitioned into picking clusters. An anti-collision picking sequence for a picking cluster is determined based on the experience of experts. The algorithm combines Gaussian distance weights with the winner-takes-all approach as an optic neural filter. In tests, the F1-score of this method for sweet peppers in a densely planted environment was 91.84%, which is a 9.14% improvement compared to YOLO-V4. The average localization accuracy and collision-free harvesting success rate were 89.55% and 90.04%, respectively. The recognition and localization time for a single image was 0.3033 s. The time to plan a picking sequence for a single image was 0.283 s. When the robotic arm harvested 22 and 24 sweet peppers, compared to sequential and stochastic planning, the proposed method had higher collision-free picking rates by 18.18, 18.18, 16.67, and 25 percentage points, respectively. This method can accurately detect sweet peppers, reduce collision damage, and improve picking efficiency in high-density orchard environments. This study may provide technical support for anti-collision picking of sweet peppers by robots.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xia关闭了xia文献求助
刚刚
guangweiyan发布了新的文献求助10
刚刚
Mrmao0213发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
ZKang发布了新的文献求助10
1秒前
李白发布了新的文献求助10
2秒前
2秒前
善学以致用应助润润轩轩采纳,获得10
3秒前
李爱国应助平淡雪枫采纳,获得10
3秒前
麻花精发布了新的文献求助10
3秒前
石头完成签到,获得积分10
3秒前
北北北应助n5421采纳,获得10
4秒前
Ican发布了新的文献求助10
4秒前
科目三应助236采纳,获得10
4秒前
4秒前
yimi发布了新的文献求助10
4秒前
dinghaifeng完成签到,获得积分10
5秒前
SciGPT应助一二采纳,获得10
6秒前
wentyli完成签到,获得积分10
6秒前
Sharon发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
君莫笑完成签到,获得积分10
7秒前
光亮向真完成签到,获得积分10
7秒前
7秒前
肖肖完成签到,获得积分10
8秒前
王京完成签到,获得积分10
8秒前
doukeze发布了新的文献求助20
8秒前
zzh完成签到 ,获得积分10
9秒前
9秒前
9秒前
小祺发布了新的文献求助10
9秒前
9秒前
风清扬发布了新的文献求助10
10秒前
走蛋吧发布了新的文献求助10
11秒前
gexiaoyang发布了新的文献求助10
11秒前
NexusExplorer应助麻花精采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4464451
求助须知:如何正确求助?哪些是违规求助? 3926839
关于积分的说明 12185827
捐赠科研通 3579582
什么是DOI,文献DOI怎么找? 1966828
邀请新用户注册赠送积分活动 1005440
科研通“疑难数据库(出版商)”最低求助积分说明 899722