Predicting Neurological Deterioration after Moderate Traumatic Brain Injury: Development and Validation of a Prediction Model Based on Data Collected on Admission

列线图 创伤性脑损伤 置信区间 医学 逐步回归 自举(财务) 格拉斯哥昏迷指数 格拉斯哥结局量表 损伤严重程度评分 毒物控制 逻辑回归 急诊医学 内科学 伤害预防 外科 精神科 金融经济学 经济
作者
Mingsheng Chen,Zhihong Li,Zhifeng Yan,Shunnan Ge,Yongbing Zhang,Haigui Yang,Lanfu Zhao,Lingyu Liu,Xingye Zhang,Yaning Cai,Yan Qu
出处
期刊:Journal of Neurotrauma [Mary Ann Liebert, Inc.]
卷期号:39 (5-6): 371-378 被引量:16
标识
DOI:10.1089/neu.2021.0360
摘要

Moderate traumatic brain injury (mTBI) is a heterogeneous entity that is poorly defined in the literature. Patients with mTBI have a high rate of neurological deterioration (ND), which is usually accompanied by poor prognosis and no definitive methods to predict. The purpose of this study is to develop and validate a prediction model that estimates the ND risk in patients with mTBI using data collected on admission. Data for 479 patients with mTBI collected retrospectively in our department were analyzed by logistic regression models. Bivariable logistic regression identified variables with a p < 0.05. Multi-variable logistic regression modeling with backward stepwise elimination was used to determine reduced parameters and establish a prediction model. The discrimination efficacy, calibration efficacy, and clinical utility of the prediction model were evaluated. The prediction model was validated using data for 176 patients collected from another hospital. Eight independent prognostic factors were identified: hypertension, Marshall scale (types III and IV), subdural hemorrhage (SDH), location of contusion (frontal and temporal contusions), Injury Severity Score >13, D-dimer level >11.4 mg/L, Glasgow Coma Scale score ≤10, and platelet count ≤152 × 109/L. A prediction model was established and was shown as a nomogram. Using bootstrapping, internal validation showed that the C-statistic of the prediction model was 0.881 (95% confidence interval [CI]: 0.849-0.909). The results of external validation showed that the nomogram could predict ND with an area under the curve of 0.827 (95% CI: 0.763-0.880). The present model, based on simple parameters collected on admission, can predict the risk of ND in patients with mTBI accurately. The high discriminative ability indicates the potential of this model for classifying patients with mTBI according to ND risk.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
阿梅梅梅发布了新的文献求助10
2秒前
Vi完成签到,获得积分10
3秒前
123123发布了新的文献求助10
3秒前
4秒前
Asteria完成签到,获得积分10
4秒前
共行发布了新的文献求助10
5秒前
5秒前
研友_LpQGjn完成签到 ,获得积分10
7秒前
7秒前
西西2完成签到 ,获得积分10
8秒前
小菜鸡完成签到 ,获得积分10
8秒前
Ava应助清新的音响采纳,获得10
9秒前
柔之发布了新的文献求助10
9秒前
TIGun发布了新的文献求助10
12秒前
13秒前
13秒前
领导范儿应助123123采纳,获得10
14秒前
15秒前
15秒前
16秒前
BOB发布了新的文献求助10
20秒前
豌豆发布了新的文献求助10
21秒前
sunshine发布了新的文献求助10
21秒前
21秒前
22秒前
大个应助豌豆采纳,获得10
25秒前
yanna发布了新的文献求助10
26秒前
情怀应助科研通管家采纳,获得10
26秒前
Hello应助科研通管家采纳,获得50
26秒前
科研通AI5应助科研通管家采纳,获得10
26秒前
我是老大应助科研通管家采纳,获得10
26秒前
情怀应助科研通管家采纳,获得10
26秒前
科研通AI2S应助科研通管家采纳,获得10
26秒前
乐乐应助科研通管家采纳,获得10
26秒前
26秒前
26秒前
Lucas应助123123采纳,获得10
26秒前
机智的水风完成签到,获得积分20
30秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778211
求助须知:如何正确求助?哪些是违规求助? 3323865
关于积分的说明 10216275
捐赠科研通 3039094
什么是DOI,文献DOI怎么找? 1667782
邀请新用户注册赠送积分活动 798383
科研通“疑难数据库(出版商)”最低求助积分说明 758366