Recipe for a General, Powerful, Scalable Graph Transformer

计算机科学 可扩展性 理论计算机科学 建筑 模块化设计 图形 变压器 程序设计语言 艺术 数据库 电压 视觉艺术 物理 量子力学
作者
Ladislav Rampášek,Mikhail Galkin,Vijay Prakash Dwivedi,Anh Tuan Luu,Guy Wolf,Dominique Beaini
出处
期刊:Cornell University - arXiv 被引量:110
标识
DOI:10.48550/arxiv.2205.12454
摘要

We propose a recipe on how to build a general, powerful, scalable (GPS) graph Transformer with linear complexity and state-of-the-art results on a diverse set of benchmarks. Graph Transformers (GTs) have gained popularity in the field of graph representation learning with a variety of recent publications but they lack a common foundation about what constitutes a good positional or structural encoding, and what differentiates them. In this paper, we summarize the different types of encodings with a clearer definition and categorize them as being $\textit{local}$, $\textit{global}$ or $\textit{relative}$. The prior GTs are constrained to small graphs with a few hundred nodes, here we propose the first architecture with a complexity linear in the number of nodes and edges $O(N+E)$ by decoupling the local real-edge aggregation from the fully-connected Transformer. We argue that this decoupling does not negatively affect the expressivity, with our architecture being a universal function approximator on graphs. Our GPS recipe consists of choosing 3 main ingredients: (i) positional/structural encoding, (ii) local message-passing mechanism, and (iii) global attention mechanism. We provide a modular framework $\textit{GraphGPS}$ that supports multiple types of encodings and that provides efficiency and scalability both in small and large graphs. We test our architecture on 16 benchmarks and show highly competitive results in all of them, show-casing the empirical benefits gained by the modularity and the combination of different strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
BulePie应助大力如松采纳,获得10
1秒前
1秒前
桐桐应助今天看文献了吗采纳,获得30
2秒前
杨小六完成签到,获得积分10
3秒前
4秒前
5秒前
小光光鸡鸡爆完成签到 ,获得积分10
5秒前
6秒前
kjlee完成签到,获得积分0
6秒前
量子星尘发布了新的文献求助10
7秒前
9秒前
Cyan发布了新的文献求助30
10秒前
10秒前
科研通AI5应助Junex采纳,获得10
10秒前
今后应助yyf1998采纳,获得10
11秒前
Akim应助科研通管家采纳,获得10
11秒前
慕青应助科研通管家采纳,获得30
11秒前
华仔应助科研通管家采纳,获得10
11秒前
丘比特应助科研通管家采纳,获得10
11秒前
顾矜应助科研通管家采纳,获得10
11秒前
Alex应助科研通管家采纳,获得20
11秒前
大个应助科研通管家采纳,获得10
12秒前
香蕉觅云应助科研通管家采纳,获得10
12秒前
Alex应助科研通管家采纳,获得20
12秒前
12秒前
12秒前
在水一方应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
整齐行云发布了新的文献求助10
12秒前
nuli懒羊羊完成签到,获得积分10
12秒前
聪明的云完成签到 ,获得积分10
13秒前
13秒前
黄永立关注了科研通微信公众号
14秒前
1111发布了新的文献求助10
14秒前
16秒前
科研通AI2S应助梦梦采纳,获得10
16秒前
白鹤完成签到,获得积分10
17秒前
niao发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 1500
Bulletin de la Societe Chimique de France 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4278073
求助须知:如何正确求助?哪些是违规求助? 3806572
关于积分的说明 11926614
捐赠科研通 3453462
什么是DOI,文献DOI怎么找? 1894071
邀请新用户注册赠送积分活动 943834
科研通“疑难数据库(出版商)”最低求助积分说明 847685