Data-driven multi-output prediction for TBM performance during tunnel excavation: An attention-based graph convolutional network approach

平均绝对百分比误差 人工智能 深度学习 计算机科学 卷积神经网络 支持向量机 图形 可解释性 随机森林 机器学习 人工神经网络 理论计算机科学
作者
Yue Pan,Xianlei Fu,Limao Zhang
出处
期刊:Automation in Construction [Elsevier BV]
卷期号:141: 104386-104386 被引量:65
标识
DOI:10.1016/j.autcon.2022.104386
摘要

A deep learning-based multi-output prediction model is developed to better understand and more accurately estimate tunnel boring machine (TBM) performance in each segment ring during the deep excavation under complex underground environments. The novelty lies in the development of a new deep learning approach named att-GCN, which feasibly integrates the graph convolutional networks (GCN) and scaled dot-product attention mechanism to improve model performance and interpretability. It is proved that our proposed att-GCN model is outstanding in significantly enhancing the prediction performance and effectively capturing the influence between monitoring points. As a case study, the proposed method is validated in a Singapore Mass Rail Transit (MRT) construction project, where seven features associated with the TBM machine are input for att-GCN training and testing. Experimental results reveal that the att-GCN model can exhibit a powerful capability in simultaneously predicting two targets named penetration rate (y1) and energy consumption (y2), reaching the mean absolute percentage error (MAPE) value at 15.475% and 15.173%, respectively. In terms of prediction accuracy, att-GCN is superior to some state-of-the-art algorithms, including deep neural network (DNN), random forest (RF), and support vector regression (SVR). Moreover, an online-learning version of att-GCN is designed. When the objective value is gradually known and fed into att-GCN during the tunneling procedure, the model can yield more impressive performance under the MAPE of 8.504% (y1) and 7.934% (y2). Accordingly, the real-time estimation of TBM performance based on the time-varying monitoring data provides valuable evidence to realize the intelligent control of TBM tunneling, which can ultimately improve construction efficiency and reliability. • A deep learning-based multi-output prediction model is developed to estimate TBM performance. • The novelty lies in the integration between graph convolutional networks and attention mechanism. • The proposed method is validated in a Singapore Mass Rail Transit (MRT) construction project. • Mean absolute percentage error reaches up around 15% in simultaneously predicting two targets. • The proposed method is superior to the state-of-the-art algorithms, including DNN, RF, and SVR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Backto1998发布了新的文献求助10
1秒前
2秒前
天天完成签到,获得积分10
3秒前
6秒前
WJ发布了新的文献求助10
8秒前
善学以致用应助淡定水杯采纳,获得10
8秒前
Backto1998完成签到,获得积分10
8秒前
昵称完成签到,获得积分10
10秒前
111发布了新的文献求助10
11秒前
13秒前
15秒前
16秒前
Deng完成签到,获得积分10
17秒前
康康XY完成签到 ,获得积分10
17秒前
zjh发布了新的文献求助10
19秒前
淡定水杯发布了新的文献求助10
21秒前
李健的小迷弟应助YGTRECE采纳,获得10
24秒前
赘婿应助亦雪采纳,获得10
25秒前
wrr应助Zhidong Wei采纳,获得10
25秒前
爱学习的瑞瑞子完成签到 ,获得积分10
27秒前
宁为树发布了新的文献求助10
27秒前
27秒前
32秒前
32秒前
chiaoyin999应助潇潇雨歇采纳,获得10
34秒前
35秒前
我是老大应助李哈哈采纳,获得10
35秒前
36秒前
36秒前
YGTRECE发布了新的文献求助10
37秒前
亦雪发布了新的文献求助10
38秒前
rye227应助张文博采纳,获得20
41秒前
wlf发布了新的文献求助10
41秒前
41秒前
标致小翠完成签到,获得积分10
42秒前
42秒前
xiao_J发布了新的文献求助10
43秒前
YGTRECE完成签到,获得积分20
43秒前
44秒前
chenn完成签到 ,获得积分10
45秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778047
求助须知:如何正确求助?哪些是违规求助? 3323723
关于积分的说明 10215564
捐赠科研通 3038918
什么是DOI,文献DOI怎么找? 1667711
邀请新用户注册赠送积分活动 798351
科研通“疑难数据库(出版商)”最低求助积分说明 758339