An opposition learning and spiral modelling based arithmetic optimization algorithm for global continuous optimization problems

计算机科学 数学优化 连续优化 最优化问题 水准点(测量) 全局优化 工程优化 算法 局部最优 莱维航班 启发式 最大值和最小值 多群优化 数学 随机游动 统计 数学分析 大地测量学 地理
作者
Yang Yang,Yuchao Gao,Shuang Tan,Shangrui Zhao,Jinran Wu,Shangce Gao,Tengfei Zhang,Yu-Chu Tian,You‐Gan Wang
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:113: 104981-104981 被引量:24
标识
DOI:10.1016/j.engappai.2022.104981
摘要

In engineering applications, many real-world optimization problems are nonlinear with multiple local optimums. Traditional algorithms that require gradients are not suitable for these problems. Meta-heuristic algorithms are popularly employed to deal with these problems because they can promisingly jump out of local optima and do not need any gradient information. The arithmetic optimization algorithm (AOA), a recently developed meta-heuristic algorithm, uses arithmetic operators (multiplication, division, subtraction, and addition) to solve optimization problems including nonlinear ones. However, the exploration and exploitation of AOA are not effective to handle some complex optimization problems. In this paper, an opposition learning and spiral modelling based AOA, namely OSAOA, is proposed for enhancing the optimization performance. It improves AOA from two perspectives. In the first perspective, the opposition-based learning (OBL) is committed to taking both candidate solutions and their opposite solutions into consideration for improving the global search with a high probability of jumping out of local minima. Then, the spiral modelling is introduced as the second perspective, which is particularly useful in getting the solutions gathering faster and accelerating the convergence speed in the later stage. In addition, OSAOA is compared with other existing advanced meta-heuristic algorithms based on 23 benchmark functions and four engineering problems: the three-bar truss design, the cantilever beam design, the pressure vessel design, and the tubular column design. From our simulations and engineering applications, the proposed OSAOA can provide better optimization results in dealing with these real-world optimization problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清秀的妙芙完成签到,获得积分10
刚刚
深情安青应助dnmd采纳,获得10
1秒前
NexusExplorer应助曾经觅珍采纳,获得10
1秒前
1秒前
2秒前
Au完成签到,获得积分10
4秒前
blue2021发布了新的文献求助10
6秒前
夏夏周发布了新的文献求助10
7秒前
iNk应助Broadway Zhang采纳,获得10
10秒前
雪白的听寒完成签到 ,获得积分10
11秒前
Karrisa应助我的名字是山脉采纳,获得10
12秒前
斯文败类应助执着柏柳采纳,获得10
14秒前
桐桐应助blue2021采纳,获得10
14秒前
15秒前
邓佳鑫Alan应助pgg采纳,获得10
15秒前
Cao完成签到 ,获得积分10
16秒前
机智幼丝完成签到,获得积分10
16秒前
机智幼丝发布了新的文献求助10
20秒前
21秒前
21秒前
24秒前
24秒前
dnmd发布了新的文献求助10
26秒前
咕咕发布了新的文献求助10
28秒前
29秒前
wook完成签到,获得积分10
30秒前
31秒前
自由莺完成签到 ,获得积分10
32秒前
33秒前
Eden完成签到 ,获得积分10
34秒前
35秒前
动漫大师发布了新的文献求助10
37秒前
38秒前
流星雨发布了新的文献求助10
38秒前
平常的毛豆应助小明采纳,获得10
39秒前
完美世界应助fl采纳,获得10
39秒前
hahahalha完成签到,获得积分10
41秒前
43秒前
44秒前
48秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Technologies supporting mass customization of apparel: A pilot project 300
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780636
求助须知:如何正确求助?哪些是违规求助? 3326165
关于积分的说明 10225991
捐赠科研通 3041257
什么是DOI,文献DOI怎么找? 1669261
邀请新用户注册赠送积分活动 799040
科研通“疑难数据库(出版商)”最低求助积分说明 758685