Biomaterialomics: Data science-driven pathways to develop fourth-generation biomaterials

适应性 计算机科学 元数据 相关性(法律) 管道(软件) 数据科学 人工智能 纳米技术 系统工程 工程类 材料科学 生态学 政治学 法学 生物 程序设计语言 操作系统
作者
Bikramjit Basu,N. H. Gowtham,Yang Xiao,Surya R. Kalidindi,Kam W. Leong
出处
期刊:Acta Biomaterialia [Elsevier BV]
卷期号:143: 1-25 被引量:70
标识
DOI:10.1016/j.actbio.2022.02.027
摘要

Conventional approaches to developing biomaterials and implants require intuitive tailoring of manufacturing protocols and biocompatibility assessment. This leads to longer development cycles, and high costs. To meet existing and unmet clinical needs, it is critical to accelerate the production of implantable biomaterials, implants and biomedical devices. Building on the Materials Genome Initiative, we define the concept ‘biomaterialomics’ as the integration of multi-omics data and high-dimensional analysis with artificial intelligence (AI) tools throughout the entire pipeline of biomaterials development. The Data Science-driven approach is envisioned to bring together on a single platform, the computational tools, databases, experimental methods, machine learning, and advanced manufacturing (e.g., 3D printing) to develop the fourth-generation biomaterials and implants, whose clinical performance will be predicted using ‘digital twins’. While analysing the key elements of the concept of ‘biomaterialomics’, significant emphasis has been put forward to effectively utilize high-throughput biocompatibility data together with multiscale physics-based models, E-platform/online databases of clinical studies, data science approaches, including metadata management, AI/ Machine Learning (ML) algorithms and uncertainty predictions. Such integrated formulation will allow one to adopt cross-disciplinary approaches to establish processing-structure-property (PSP) linkages. A few published studies from the lead author's research group serve as representative examples to illustrate the formulation and relevance of the ‘Biomaterialomics’ approaches for three emerging research themes, i.e. patient-specific implants, additive manufacturing, and bioelectronic medicine. The increased adaptability of AI/ML tools in biomaterials science along with the training of the next generation researchers in data science are strongly recommended. This leading opinion review paper emphasizes the need to integrate the concepts and algorithms of the data science with biomaterials science. Also, this paper emphasizes the need to establish a mathematically rigorous cross-disciplinary framework that will allow a systematic quantitative exploration and curation of critical biomaterials knowledge needed to drive objectively the innovation efforts within a suitable uncertainty quantification framework, as embodied in ‘biomaterialomics’ concept, which integrates multi-omics data and high-dimensional analysis with artificial intelligence (AI) tools, like machine learning. The formulation of this approach has been demonstrated for patient-specific implants, additive manufacturing, and bioelectronic medicine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
骤世界完成签到 ,获得积分10
2秒前
qq完成签到 ,获得积分10
2秒前
zz完成签到,获得积分20
2秒前
英俊的铭应助青青子衿采纳,获得10
3秒前
张龙雨完成签到 ,获得积分20
6秒前
超超的仔仔月完成签到,获得积分10
8秒前
8秒前
萌新完成签到 ,获得积分10
10秒前
10秒前
jenningseastera应助Bin_Liu采纳,获得10
11秒前
舒适怀寒完成签到 ,获得积分10
11秒前
11秒前
12秒前
15秒前
15秒前
香蕉觅云应助madmax采纳,获得10
16秒前
眼睛大樱桃完成签到 ,获得积分10
16秒前
16秒前
wuniuniu完成签到,获得积分20
16秒前
小恐龙飞飞完成签到 ,获得积分10
18秒前
lily336699发布了新的文献求助10
18秒前
20秒前
Erica发布了新的文献求助10
20秒前
葛擎苍发布了新的文献求助10
20秒前
vivi完成签到 ,获得积分10
22秒前
22秒前
25秒前
机灵橘子发布了新的文献求助50
26秒前
隐形曼青应助sapphire采纳,获得10
28秒前
cy发布了新的文献求助10
29秒前
Star1983发布了新的文献求助10
29秒前
Cathy完成签到,获得积分10
30秒前
Erica完成签到,获得积分10
30秒前
31秒前
滴滴哒完成签到,获得积分10
31秒前
hhhhmmmn完成签到,获得积分10
31秒前
tian发布了新的文献求助10
31秒前
32秒前
香蕉觅云应助蒙太奇采纳,获得10
34秒前
青青子衿发布了新的文献求助10
35秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781132
求助须知:如何正确求助?哪些是违规求助? 3326545
关于积分的说明 10227747
捐赠科研通 3041707
什么是DOI,文献DOI怎么找? 1669585
邀请新用户注册赠送积分活动 799100
科研通“疑难数据库(出版商)”最低求助积分说明 758745