亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Exploring and understanding the internal voltage losses through catalyst layers in proton exchange membrane water electrolysis devices

阳极 阴极 电解 欧姆接触 材料科学 电解水 质子交换膜燃料电池 电压 光电子学 催化作用 核工程 纳米技术 化学 电解质 电气工程 电极 图层(电子) 工程类 生物化学 物理化学
作者
Zhenye Kang,Hao Wang,Yanrong Liu,Jingke Mo,Min Wang,Jing Li,Xinlong Tian
出处
期刊:Applied Energy [Elsevier BV]
卷期号:317: 119213-119213 被引量:70
标识
DOI:10.1016/j.apenergy.2022.119213
摘要

Proton exchange membrane water electrolysis (PEMWE) technology has been regarded as one of the most promising ways to fulfill a sustainable energy system when coupled with renewable energies. Understanding the working mechanisms and losses in PEMWE devices is critical for achieving the desired performance and durability that targets wide commercial applications. This work demonstrates a novel four-wire sensing technique for acquiring the internal voltage losses in an operating PEMWE cell, which deconvolutes the total cell voltage into five parts. Most importantly, the ohmic resistances on anode and cathode catalyst layers are in-situ and operando measured. The two catalyst layer resistances show completely different values and trends under the same operating conditions, which is mainly due to the electrical conductivity difference between the two layers. The ohmic resistance of the anode catalyst shows an exponential decay with current density, which is in accordance with previously published visualization results, and shows a dependency on temperature; while the ohmic resistance of the cathode catalyst layer is a constant and not related to operating conditions. With the adoption of the technique, a phenomenon in which the ohmic resistance of the anode catalyst changes dynamically during the cell testing is captured and recorded for the first time. These findings provide very valuable data and results for understanding the catalyst layer working mechanisms, and also help to optimize the future catalyst layer. The four-wire sensing technique developed in this study is a promising tool for diagnosis, analysis, and optimization not only for PEMWE devices, but also potentially for other energy storage and conversion devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杨艳完成签到 ,获得积分10
4秒前
6秒前
9秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
14秒前
顾矜应助科研通管家采纳,获得10
14秒前
SuzhenZH完成签到,获得积分10
18秒前
朱朱子完成签到 ,获得积分10
19秒前
21秒前
21秒前
22秒前
momo发布了新的文献求助10
24秒前
果冻橙完成签到,获得积分10
26秒前
科研通AI5应助跳跃野狼采纳,获得10
27秒前
怕黑初阳发布了新的文献求助10
28秒前
在水一方应助momo采纳,获得10
29秒前
31秒前
cnbhhhhh发布了新的文献求助10
38秒前
momo完成签到,获得积分10
38秒前
38秒前
怕黑初阳完成签到,获得积分10
43秒前
44秒前
一卷钢丝球完成签到,获得积分10
48秒前
恒温失效发布了新的文献求助10
49秒前
爱静静完成签到,获得积分0
50秒前
53秒前
柚子完成签到 ,获得积分10
56秒前
xxx完成签到,获得积分10
58秒前
聪明勇敢有力气完成签到 ,获得积分10
1分钟前
酷波er应助恒温失效采纳,获得10
1分钟前
1分钟前
共享精神应助fheu采纳,获得10
1分钟前
标致飞雪发布了新的文献求助20
1分钟前
leslie发布了新的文献求助10
1分钟前
领导范儿应助cnbhhhhh采纳,获得10
1分钟前
1分钟前
1分钟前
fheu发布了新的文献求助10
1分钟前
江姜酱先生完成签到,获得积分10
1分钟前
康康完成签到,获得积分10
1分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800880
求助须知:如何正确求助?哪些是违规求助? 3346424
关于积分的说明 10329241
捐赠科研通 3062881
什么是DOI,文献DOI怎么找? 1681222
邀请新用户注册赠送积分活动 807463
科研通“疑难数据库(出版商)”最低求助积分说明 763702