分数阶微积分
反常扩散
数学
操作员(生物学)
放松(心理学)
扩散
数学分析
类型(生物学)
分形
傅里叶变换
空格(标点符号)
扩散方程
功能(生物学)
边值问题
物理
计算机科学
抑制因子
创新扩散
服务(商务)
心理学
生态学
化学
生物化学
经济
转录因子
知识管理
经济
社会心理学
操作系统
基因
进化生物学
热力学
生物
作者
E. K. Lenzi,L. R. Evangelista
摘要
We analyze a new space–time fractional diffusion equation encompassing different diffusion processes in d-dimensions. The first-order time derivative is replaced with a time derivative of the Caputo type of arbitrary order β; the spatial-fractional operator of Riesz–Feller or Riesz–Weyl type is replaced with its extension to d-dimensions, defined by means of an extended Fourier transform. The mathematical problem with the spatial-fractional operator proposed here is formulated to tackle anomalous diffusion in heterogeneous media (fractal structures) and incorporating power-law distributions. A formal solution is proposed using the Green function method which, for appropriate initial and boundary conditions, can be expressed in terms of the generalized H-function of Fox—a typical track of anomalous diffusive processes. These mathematical tools provide a new powerful framework to model anomalous diffusion and relaxation problems in heterogeneous media.
科研通智能强力驱动
Strongly Powered by AbleSci AI