已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

fNIRS Evidence for Distinguishing Patients With Major Depression and Healthy Controls

重性抑郁障碍 功能近红外光谱 前额叶皮质 医学 萧条(经济学) 静息状态功能磁共振成像 相关性 听力学 神经科学 心理学 精神科 认知 几何学 数学 宏观经济学 经济
作者
Jinlong Chao,Shuzhen Zheng,Hongtong Wu,Dixin Wang,Xuan Zhang,Hong Peng,Bin Hu
出处
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering [Institute of Electrical and Electronics Engineers]
卷期号:29: 2211-2221 被引量:59
标识
DOI:10.1109/tnsre.2021.3115266
摘要

In recent years, major depressive disorder (MDD) has been shown to negatively impact physical recovery in a variety of patients. Functional near-infrared spectroscopy (fNIRS) is a tool that can potentially supplement clinical interviews and mental state examinations to establish a psychiatric diagnosis and monitor treatment progress. Thirty-two subjects, including 16 patients clinically diagnosed with MDD and 16 healthy controls (HCs), participated in the study. Brain oxyhemoglobin (HbO) and deoxyhemoglobin (HbR) responses were recorded using a 22-channel continuous-wave fNIRS device while the subjects performed the emotional sound test. This study evaluated the difference between MDD patients and HCs using a variety of methods. In a comparison of the Pearson correlation coefficients between the HbO/HbR responses of each fNIRS channel and four scores, MDD patients and HCs had significantly different Athens Insomnia Scale (AIS) scores. By quantitative evaluation of the functional association, we found that MDD patients had aberrant functional connectivity compared with HCs. Furthermore, we concluded that compared with HCs, there were marked abnormalities in blood oxygen in the bilateral ventrolateral prefrontal cortex (VLPFC) and bilateral dorsolateral prefrontal cortex (DLPFC). Four statistical-based features extracted from HbO signals and four vector-based features from both HbO and HbR served as inputs to four simple neural networks (multilayer neural network (MNN), feedforward neural network (FNN), cascade forward neural network (CFNN) and recurrent neural network (RNN)). Through an analysis of combinations of different features, the combination of 4 common features (mean, STD, area under the receiver operating characteristic curve (AUC) and slope) yielded the highest classification accuracy of 89.74% for fear emotion. The combination of four novel feature (CBV, COE, |L | and K) resulted in a classification accuracy of 99.94% for fear emotion. The top 10 common and novel features were selected by the ReliefF feature selection algorithm, resulting in classification accuracies of 83.52% and 91.99%, respectively. This study identified the AUC and angle K as specific neuromarkers for predicting MDD across specific depression-related regions of the prefrontal cortex (PFC). These findings suggest that the fNIRS measurement of the PFC may serve as a supplementary test in routine clinical practice to further support a diagnosis of MDD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
大霍发布了新的文献求助10
2秒前
唐云炳发布了新的文献求助10
3秒前
shuo完成签到,获得积分10
5秒前
RONG发布了新的文献求助10
7秒前
8秒前
stuuuuuuuuuuudy完成签到 ,获得积分10
8秒前
9秒前
Lucas应助出口的胖猪采纳,获得10
10秒前
12秒前
15秒前
17秒前
醉熏的香菱发布了新的文献求助100
18秒前
Andrewlabeth完成签到,获得积分10
19秒前
缺粥发布了新的文献求助10
20秒前
23秒前
24秒前
星辰大海应助IVY采纳,获得10
24秒前
26秒前
RONG完成签到,获得积分10
28秒前
28秒前
xy发布了新的文献求助10
30秒前
英勇翠琴发布了新的文献求助10
32秒前
35秒前
酷酷绮彤完成签到,获得积分10
36秒前
大写的LV完成签到 ,获得积分10
38秒前
爱吃巧克力的草莓完成签到 ,获得积分10
40秒前
瑄崽儿HRBUST关注了科研通微信公众号
42秒前
dd36完成签到,获得积分10
42秒前
科研通AI2S应助tttt采纳,获得10
43秒前
张建威完成签到,获得积分10
46秒前
淡定香氛发布了新的文献求助10
47秒前
香蕉觅云应助峡星牙采纳,获得10
55秒前
57秒前
59秒前
1分钟前
IVY发布了新的文献求助10
1分钟前
豆芽发布了新的文献求助10
1分钟前
1分钟前
第八十六发布了新的文献求助10
1分钟前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4098320
求助须知:如何正确求助?哪些是违规求助? 3636063
关于积分的说明 11524745
捐赠科研通 3346151
什么是DOI,文献DOI怎么找? 1839036
邀请新用户注册赠送积分活动 906477
科研通“疑难数据库(出版商)”最低求助积分说明 823715