催化作用
钒
分解
膜
质子交换膜燃料电池
化学
钌
重量分析
制氢
氢
化学工程
材料科学
分析化学(期刊)
无机化学
色谱法
有机化学
工程类
生物化学
作者
Krystina Lamb,David M. Viano,Matthew J. Langley,San Shwe Hla,Michael D. Dolan
标识
DOI:10.1021/acs.iecr.8b01476
摘要
Ammonia is a prospective hydrogen transport intermediate due to its high volumetric and gravimetric H2 densities, and existing production and distribution infrastructure. However, its ultimate use in mobile proton exchange membrane (PEM) fuel cells necessitates decomposition and purification at or near the point of use. In this study, the production of high purity H2 from NH3 using a two-stage process has been demonstrated by coupling separate decomposition (150 g of 1 wt % Ru on Al2O3 catalyst) and purification (a single 150 cm2, Pd-coated tubular vanadium membrane) stages. Equilibrium NH3 decomposition and >90% H2 recovery was demonstrated with a catalyst temperature of 450 °C and membrane temperature of 340 °C, with an overall H2 production rate of 0.75 kg/day. Mass spectrometry showed that levels of N2 and NH3 impurities were below detection limits. This configuration is readily scalable by increasing the catalyst loading and membrane area (through use of multiple tubes in parallel), and could enable a pathway for distributed use of H2 from NH3 in mobile and stationary power generation.
科研通智能强力驱动
Strongly Powered by AbleSci AI