亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Modeling positive and negative feedback for improving document retrieval

文档聚类 人工智能 任务(项目管理) 相关性反馈
作者
Shufeng Hao,Chongyang Shi,Zhendong Niu,Longbing Cao
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:120: 253-261 被引量:2
标识
DOI:10.1016/j.eswa.2018.11.035
摘要

Abstract Pseudo-relevance feedback (PRF) has evident potential for enriching the representation of short queries. Traditional PRF methods treat top-ranked documents as feedback, since they are assumed to be relevant to the query. However, some of these feedback documents may actually distract from the query topic for a range of reasons and accordingly downgrade PRF system performance. Such documents constitute negative examples (negative feedback) but could also be valuable in retrieval. In this paper, a novel framework of query language model construction is proposed in order to improve retrieval performance by integrating both positive and negative feedback. First, an improvement-based method is proposed to automatically identify the types of feedback documents (i.e. positive or negative) according to whether the document enhances the retrieval’s effectiveness. Subsequently, based on the learned positive and negative examples, the positive feedback models and the negative feedback models are estimated using an Expectation-Maximization algorithm with the assumptions: the positive term distribution is affected by the context term distribution and the negative term distribution is affected by both the positive term distribution and the context term distribution (such that the positive feedback model upgrades the rankings of relevant documents and the negative feedback model prunes the irrelevant documents from a query). Finally, a content-based representativeness criterion is proposed in order to obtain the representative negative feedback documents. Experiments conducted on the TREC collections demonstrate that our proposed approach results in better retrieval accuracy and robustness than baseline methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
L1完成签到 ,获得积分10
3秒前
11秒前
15秒前
乐乐应助感性的靖仇采纳,获得10
15秒前
量子星尘发布了新的文献求助10
19秒前
bkagyin应助橘祚采纳,获得10
26秒前
26秒前
27秒前
31秒前
33秒前
38秒前
橘祚发布了新的文献求助10
39秒前
42秒前
赵子龙发布了新的文献求助10
48秒前
SciGPT应助赵子龙采纳,获得10
54秒前
59秒前
量子星尘发布了新的文献求助10
1分钟前
CodeCraft应助感性的靖仇采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
忧心的寄松完成签到,获得积分10
1分钟前
1分钟前
1分钟前
Jasonjoey发布了新的文献求助10
1分钟前
1分钟前
1分钟前
Jasonjoey完成签到,获得积分10
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
HLT完成签到 ,获得积分10
1分钟前
1分钟前
vala完成签到,获得积分10
1分钟前
田様应助vala采纳,获得10
2分钟前
2分钟前
脑洞疼应助感性的靖仇采纳,获得10
2分钟前
量子星尘发布了新的文献求助30
2分钟前
2分钟前
2分钟前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
The Psychology of Advertising (5th edition) 500
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3865704
求助须知:如何正确求助?哪些是违规求助? 3408265
关于积分的说明 10657039
捐赠科研通 3132240
什么是DOI,文献DOI怎么找? 1727486
邀请新用户注册赠送积分活动 832328
科研通“疑难数据库(出版商)”最低求助积分说明 780220