Orientation-Controlled Nonradiative Energy Transfer to Colloidal Nanoplatelets: Engineering Dipole Orientation Factor

费斯特共振能量转移 单层 偶极子 堆积 量子点 材料科学 方向(向量空间) 分子物理学 光电子学 化学物理 纳米技术 化学 光学 荧光 物理 几何学 数学 有机化学
作者
Onur Erdem,Kıvanç Güngör,Burak Güzeltürk,İbrahim Tanrıöver,Mustafa Sak,Murat Olutaş,Didem Dede,Yusuf Keleştemur,Hilmi Volkan Demir
出处
期刊:Nano Letters [American Chemical Society]
卷期号:19 (7): 4297-4305 被引量:69
标识
DOI:10.1021/acs.nanolett.9b00681
摘要

We proposed and showed strongly orientation-controlled Förster resonance energy transfer (FRET) to highly anisotropic CdSe nanoplatelets (NPLs). For this purpose, we developed a liquid–air interface self-assembly technique specific to depositing a complete monolayer of NPLs only in a single desired orientation, either fully stacked (edge-up) or fully nonstacked (face-down), with near-unity surface coverage and across large areas over 20 cm2. These NPL monolayers were employed as acceptors in an energy transfer working model system to pair with CdZnS/ZnS core/shell quantum dots (QDs) as donors. We found the resulting energy transfer from the QDs to be significantly accelerated (by up to 50%) to the edge-up NPL monolayer compared to the face-down one. We revealed that this acceleration of FRET is accounted for by the enhancement of the dipole–dipole interaction factor between a QD-NPL pair (increased from 1/3 to 5/6) as well as the closer packing of NPLs with stacking. Also systematically studying the distance-dependence of FRET between QDs and NPL monolayers via varying their separation (d) with a dielectric spacer, we found out that the FRET rate scales with d–4 regardless of the specific NPL orientation. Our FRET model, which is based on the original Förster theory, computes the FRET efficiencies in excellent agreement with our experimental results and explains well the enhancement of FRET to NPLs with stacking. These findings indicate that the geometrical orientation of NPLs and thereby their dipole interaction strength can be exploited as an additional degree of freedom to control and tune the energy transfer rate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lige完成签到 ,获得积分10
刚刚
丶北沐城歌完成签到,获得积分10
刚刚
酷波er应助rose123456采纳,获得10
刚刚
lyy发布了新的文献求助10
1秒前
sure发布了新的文献求助10
1秒前
1秒前
泥泥给xx的求助进行了留言
1秒前
buluu完成签到,获得积分10
2秒前
2秒前
风暴发布了新的文献求助10
2秒前
2秒前
李骁完成签到 ,获得积分10
2秒前
陈木木完成签到,获得积分10
3秒前
dz完成签到,获得积分10
3秒前
3秒前
4秒前
隔壁巷子里的劉完成签到 ,获得积分10
4秒前
李健的小迷弟应助fate8680采纳,获得10
4秒前
4秒前
热爱科研的小康完成签到,获得积分20
4秒前
飞奔的五花肉完成签到,获得积分10
5秒前
现代代双发布了新的文献求助10
5秒前
5秒前
CHQiao发布了新的文献求助10
5秒前
吴楚楚完成签到,获得积分20
5秒前
小吴同学来啦完成签到,获得积分10
6秒前
科研通AI6应助Gavin采纳,获得10
6秒前
嗯嗯完成签到 ,获得积分10
6秒前
竹音完成签到,获得积分10
6秒前
长大lwp发布了新的文献求助10
6秒前
vkey完成签到,获得积分10
7秒前
ning_yang发布了新的文献求助10
7秒前
7秒前
7秒前
单身的青柏完成签到 ,获得积分10
8秒前
大大完成签到,获得积分10
8秒前
阿尔法突触核蛋白完成签到,获得积分10
8秒前
泰坦发布了新的文献求助30
9秒前
灵巧晓山完成签到,获得积分10
9秒前
Lucas应助若灵采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4473074
求助须知:如何正确求助?哪些是违规求助? 3932208
关于积分的说明 12199211
捐赠科研通 3586845
什么是DOI,文献DOI怎么找? 1971671
邀请新用户注册赠送积分活动 1009576
科研通“疑难数据库(出版商)”最低求助积分说明 903292