数学
理论(学习稳定性)
乘数(经济学)
二次方程
非线性系统
常量(计算机编程)
三角洲
不变(物理)
应用数学
约束(计算机辅助设计)
控制理论(社会学)
计算机科学
控制(管理)
物理
几何学
宏观经济学
人工智能
天文
经济
机器学习
程序设计语言
量子力学
数学物理
作者
Luis D'Alto,M. Corless
标识
DOI:10.3934/naco.2013.3.175
摘要
The concept of incremental quadraticstability ($\delta$QS) is very useful in treating systems with persistently acting inputs.To illustrate, if a time-invariant $\delta$QS system is subject to a constant input or $T$-periodic input then,all its trajectories exponentially converge to a unique constant or $T$-periodictrajectory, respectively.By considering the relationship of $\delta$QS to the usual concept ofquadratic stability, we obtain a useful necessary and sufficientcondition for $\delta$QS.A main contribution of the paper is to consider nonlinear/uncertain systems whosestate dependent nonlinear/uncertain terms satisfy an incremental quadratic constraint which is characterized by a bunch of symmetric matriceswe call incremental multiplier matrices.We obtain linear matrix inequalities whose feasibility guarantee $\delta$QS of these systems.Frequency domain characterizations of $\delta$QS are then obtained from these conditions.By characterizing incremental multiplier matrices for many common classes of nonlinearities, wedemonstrate the usefulness of our results.
科研通智能强力驱动
Strongly Powered by AbleSci AI