Application of Machine Learning Methods in Predicting Nuclear Receptors and their Families

核受体 转录因子 过氧化物酶体增殖物激活受体 亚科 维甲酸 类固醇激素受体 雌激素受体 受体 计算生物学 遗传学 生物 癌症 基因 乳腺癌
作者
Zimei Zhang,Zheng-Xing Guan,Fang Wang,Dan Zhang,Hui Ding
出处
期刊:Medicinal Chemistry [Bentham Science Publishers]
卷期号:16 (5): 594-604 被引量:6
标识
DOI:10.2174/1573406415666191004125551
摘要

Nuclear receptors (NRs) are a superfamily of ligand-dependent transcription factors that are closely related to cell development, differentiation, reproduction, homeostasis, and metabolism. According to the alignments of the conserved domains, NRs are classified and assigned the following seven subfamilies or eight subfamilies: (1) NR1: thyroid hormone like (thyroid hormone, retinoic acid, RAR-related orphan receptor, peroxisome proliferator activated, vitamin D3- like), (2) NR2: HNF4-like (hepatocyte nuclear factor 4, retinoic acid X, tailless-like, COUP-TFlike, USP), (3) NR3: estrogen-like (estrogen, estrogen-related, glucocorticoid-like), (4) NR4: nerve growth factor IB-like (NGFI-B-like), (5) NR5: fushi tarazu-F1 like (fushi tarazu-F1 like), (6) NR6: germ cell nuclear factor like (germ cell nuclear factor), and (7) NR0: knirps like (knirps, knirpsrelated, embryonic gonad protein, ODR7, trithorax) and DAX like (DAX, SHP), or dividing NR0 into (7) NR7: knirps like and (8) NR8: DAX like. Different NRs families have different structural features and functions. Since the function of a NR is closely correlated with which subfamily it belongs to, it is highly desirable to identify NRs and their subfamilies rapidly and effectively. The knowledge acquired is essential for a proper understanding of normal and abnormal cellular mechanisms. With the advent of the post-genomics era, huge amounts of sequence-known proteins have increased explosively. Conventional methods for accurately classifying the family of NRs are experimental means with high cost and low efficiency. Therefore, it has created a greater need for bioinformatics tools to effectively recognize NRs and their subfamilies for the purpose of understanding their biological function. In this review, we summarized the application of machine learning methods in the prediction of NRs from different aspects. We hope that this review will provide a reference for further research on the classification of NRs and their families.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苹果易真完成签到,获得积分20
1秒前
DXM完成签到 ,获得积分10
2秒前
2秒前
研友_nq5EGn完成签到 ,获得积分10
3秒前
ccalvintan完成签到,获得积分10
4秒前
玉崟完成签到 ,获得积分10
4秒前
韦思茹完成签到,获得积分10
5秒前
天天快乐应助tingalan采纳,获得10
5秒前
6秒前
8秒前
SUE发布了新的文献求助10
8秒前
ZHANGJIAN完成签到 ,获得积分10
9秒前
情怀应助开朗发卡采纳,获得10
9秒前
研友_8QxN1Z完成签到,获得积分10
10秒前
橘子树完成签到 ,获得积分10
10秒前
10秒前
糖豆子完成签到,获得积分10
10秒前
11秒前
小桃子完成签到,获得积分10
11秒前
zulpikar完成签到 ,获得积分10
11秒前
滴滴滴发布了新的文献求助30
12秒前
林布林发布了新的文献求助10
13秒前
淡淡乐巧完成签到 ,获得积分10
13秒前
万能图书馆应助lanjiu采纳,获得10
14秒前
我是老大应助SUE采纳,获得10
15秒前
练得身形似鹤形完成签到 ,获得积分10
15秒前
Mayinhere完成签到,获得积分10
15秒前
15秒前
15秒前
猪猪hero应助zero_sky采纳,获得10
16秒前
16秒前
专注念芹完成签到 ,获得积分20
17秒前
18秒前
DrLee完成签到,获得积分10
18秒前
19秒前
19秒前
20秒前
22秒前
开朗发卡发布了新的文献求助10
23秒前
可罗雀完成签到,获得积分10
23秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798859
求助须知:如何正确求助?哪些是违规求助? 3344607
关于积分的说明 10320917
捐赠科研通 3061108
什么是DOI,文献DOI怎么找? 1680042
邀请新用户注册赠送积分活动 806837
科研通“疑难数据库(出版商)”最低求助积分说明 763386