An Efficient LSTM Network for Emotion Recognition From Multichannel EEG Signals

人工智能 脑电图 计算机科学 语音识别 情绪识别 模式识别(心理学) 代表(政治) 特征(语言学) 心理学 神经科学 政治学 语言学 政治 哲学 法学
作者
Xiaobing Du,Chenyue Ma,Hang Zhang,Jinyao Li,Yu‐Kun Lai,Guozhen Zhao,Xiaoming Deng,Yong-Jin Liu,Hongan Wang
出处
期刊:IEEE Transactions on Affective Computing [Institute of Electrical and Electronics Engineers]
卷期号:13 (3): 1528-1540 被引量:61
标识
DOI:10.1109/taffc.2020.3013711
摘要

Most previous EEG-based emotion recognition methods studied hand-crafted EEG features extracted from different electrodes. In this article, we study the relation among different EEG electrodes and propose a deep learning method to automatically extract the spatial features that characterize the functional relation between EEG signals at different electrodes. Our proposed deep model is called AT tention-based LSTM with D omain D iscriminator (ATDD-LSTM), a model based on Long Short-Term Memory (LSTM) for emotion recognition that can characterize nonlinear relations among EEG signals of different electrodes. To achieve state-of-the-art emotion recognition performance, the architecture of ATDD-LSTM has two distinguishing characteristics: (1) By applying the attention mechanism to the feature vectors produced by LSTM, ATDD-LSTM automatically selects suitable EEG channels for emotion recognition, which makes the learned model concentrate on the emotion related channels in response to a given emotion; (2) To minimize the significant feature distribution shift between different sessions and/or subjects, ATDD-LSTM uses a domain discriminator to modify the data representation space and generate domain-invariant features. We evaluate the proposed ATDD-LSTM model on three public EEG emotional databases (DEAP, SEED and CMEED) for emotion recognition. The experimental results demonstrate that our ATDD-LSTM model achieves superior performance on subject-dependent (for the same subject), subject-independent (for different subjects) and cross-session (for the same subject) evaluation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
文静三颜完成签到,获得积分10
2秒前
kyt发布了新的文献求助10
4秒前
852应助迅速的八宝粥采纳,获得10
5秒前
wanci应助Helium采纳,获得10
8秒前
Hello应助科研通管家采纳,获得10
9秒前
所所应助科研通管家采纳,获得10
9秒前
无花果应助科研通管家采纳,获得10
9秒前
爆米花应助科研通管家采纳,获得10
9秒前
残幻应助科研通管家采纳,获得10
9秒前
脑洞疼应助科研通管家采纳,获得10
10秒前
10秒前
田様应助科研通管家采纳,获得10
10秒前
10秒前
wanci应助科研通管家采纳,获得10
10秒前
嘿嘿哈嘿88完成签到,获得积分10
12秒前
13秒前
13秒前
CipherSage应助陈可欣采纳,获得10
14秒前
17秒前
莱贝特发布了新的文献求助10
17秒前
17秒前
打打应助CHB只争朝夕采纳,获得10
19秒前
cryjslong完成签到,获得积分10
19秒前
19秒前
赘婿应助留胡子的之云采纳,获得10
19秒前
堂风发布了新的文献求助30
19秒前
王子完成签到,获得积分10
23秒前
kyt完成签到,获得积分10
24秒前
exosome发布了新的文献求助10
24秒前
24秒前
25秒前
25秒前
26秒前
陈鹿华完成签到 ,获得积分10
28秒前
852应助Guoqiang采纳,获得10
28秒前
Helium发布了新的文献求助10
30秒前
wanci应助Ivy采纳,获得10
31秒前
ppp发布了新的文献求助10
31秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Platinum-group elements : mineralogy, geology, recovery 260
Geopora asiatica sp. nov. from Pakistan 230
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780550
求助须知:如何正确求助?哪些是违规求助? 3326021
关于积分的说明 10225203
捐赠科研通 3041114
什么是DOI,文献DOI怎么找? 1669215
邀请新用户注册赠送积分活动 799021
科研通“疑难数据库(出版商)”最低求助积分说明 758669