Blood‐based detection of early‐stage Alzheimer using multiomics and machine learning

痴呆 医学 疾病 血液取样 生物标志物 阿尔茨海默病 阶段(地层学) 代谢组学 内科学 肿瘤科 生物信息学 生物 生物化学 古生物学
作者
Benoît Souchet,Alkéos Michaïl,Baptiste Billoir,François Mouton‐Liger,Juan Fortea,Alberto Lleó,Claire Paquet,Jérôme Braudeau
出处
期刊:Alzheimers & Dementia [Wiley]
卷期号:16 (S5)
标识
DOI:10.1002/alz.047334
摘要

Abstract Background The diagnosis of AD is based on cognitive symptoms, CSF assays and PET imaging. A blood test capable of detecting patients suffering from AD, at a prodromal or even pre‐symptomatic stage, will reduce the invasive and costly diagnostic tools currently used and, would allow an earlier clinical intervention. Here we assess the performance of a multiomics blood test using Machine Learning to combine metabolomic and proteomic biomarkers, pre‐identified in a brand‐new rat model. Method By sampling the plasma of a non‐transgenic animal model successfully reproducing the continuum of Alzheimer's disease progression at the brain level (Audrain et al., 2017), we identified the 105 most informative biomarkers using Artificial Intelligence. Then we analyzed the behavior of these biomarkers in 232 human plasma samples collected up to 15 years before the dementia. Three independent cohorts were used: two with the sporadic form of AD and one with Down Syndrome individuals. For each sample the 105 pre‐identified biomarkers (proteins, metabolites) were analyzed by global mass spectrometry. Using Artificial Intelligence, we identified the 25 best‐in‐class biomarkers in humans. Then we developed a neural network based on these 25 biomarkers to detect AD patients from the pre‐symptomatic phase. Result Among the 25 biomarkers, 13 are proteins and 12 are metabolites. None of these biomarkers are produced by the brain. They are produced or regulated by peripheral organs. The neural network identify Alzheimer’s patients (including pre‐symptomatic, prodromal and demented patients) from Non Alzheimer Individuals (Healthy controls and patients suffering from a neurodegenerative disease excluding Alzheimer) with 100% sensitivity and 99% specificity on a 5‐folds cross validation. Based on non‐linear and non‐monotonic biomarker progression, the neural network can identify undemented AD patients, including pre‐symptomatic and prodromal patients, against demented patient, with 99% overall accuracy. Conclusion In our retrospective, multi‐center study, we achieved high accuracy (>99%) for Alzheimer’s from pre‐symptomatic phase. Proteic and metabolomic signals are required for an effective early detection. These results strongly suggest that the use of non‐brain‐produced biomarkers improves sensitivity and specificity of early detection.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
111完成签到,获得积分10
2秒前
田様应助zlkdys采纳,获得10
3秒前
脑洞疼应助夕云采纳,获得10
4秒前
华仔应助张涛采纳,获得10
4秒前
在水一方应助东明采纳,获得10
5秒前
6秒前
7秒前
MShou完成签到,获得积分10
9秒前
9秒前
10秒前
MShou发布了新的文献求助10
12秒前
13秒前
14秒前
东明完成签到,获得积分10
15秒前
斯文败类应助三日采纳,获得10
15秒前
yang发布了新的文献求助10
16秒前
东明发布了新的文献求助10
18秒前
刘雅妮发布了新的文献求助10
18秒前
杨帆宇发布了新的文献求助10
20秒前
yuan完成签到,获得积分20
20秒前
20秒前
you完成签到 ,获得积分10
21秒前
热心的飞风完成签到 ,获得积分10
21秒前
龍Ryu完成签到,获得积分10
21秒前
科目三应助科研通管家采纳,获得10
22秒前
科研通AI5应助科研通管家采纳,获得10
22秒前
22秒前
22秒前
25秒前
26秒前
26秒前
朱先生发布了新的文献求助10
27秒前
30秒前
30秒前
三日发布了新的文献求助10
30秒前
无花果应助冷傲以珊采纳,获得30
30秒前
wwaakk完成签到 ,获得积分10
30秒前
夕云发布了新的文献求助10
33秒前
33秒前
大模型应助yang采纳,获得10
33秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783164
求助须知:如何正确求助?哪些是违规求助? 3328499
关于积分的说明 10236697
捐赠科研通 3043596
什么是DOI,文献DOI怎么找? 1670599
邀请新用户注册赠送积分活动 799766
科研通“疑难数据库(出版商)”最低求助积分说明 759119