Identification of Protein Complexes by Using a Spatial and Temporal Active Protein Interaction Network

计算机科学 鉴定(生物学) 功能(生物学) 聚类分析 基因本体论 计算生物学 数据挖掘 系统生物学 交互网络 生物网络 人工智能 基因 生物 遗传学 基因表达 植物
作者
Min Li,Xiangmao Meng,Ruiqing Zheng,Fang‐Xiang Wu,Yaohang Li,Yi Pan,Jianxin Wang
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:17 (3): 817-827 被引量:26
标识
DOI:10.1109/tcbb.2017.2749571
摘要

The rapid development of proteomics and high-throughput technologies has produced a large amount of Protein-Protein Interaction (PPI) data, which makes it possible for considering dynamic properties of protein interaction networks (PINs) instead of static properties. Identification of protein complexes from dynamic PINs becomes a vital scientific problem for understanding cellular life in the post genome era. Up to now, plenty of models or methods have been proposed for the construction of dynamic PINs to identify protein complexes. However, most of the constructed dynamic PINs just focus on the temporal dynamic information and thus overlook the spatial dynamic information of the complex biological systems. To address the limitation of the existing dynamic PIN analysis approaches, in this paper, we propose a new model-based scheme for the construction of the Spatial and Temporal Active Protein Interaction Network (ST-APIN) by integrating time-course gene expression data and subcellular location information. To evaluate the efficiency of ST-APIN, the commonly used classical clustering algorithm MCL is adopted to identify protein complexes from ST-APIN and the other three dynamic PINs, NF-APIN, DPIN, and TC-PIN. The experimental results show that, the performance of MCL on ST-APIN outperforms those on the other three dynamic PINs in terms of matching with known complexes, sensitivity, specificity, and f-measure. Furthermore, we evaluate the identified protein complexes by Gene Ontology (GO) function enrichment analysis. The validation shows that the identified protein complexes from ST-APIN are more biologically significant. This study provides a general paradigm for constructing the ST-APINs, which is essential for further understanding of molecular systems and the biomedical mechanism of complex diseases.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
脑洞疼应助科研小白采纳,获得10
1秒前
JJJJ发布了新的文献求助10
1秒前
Echo完成签到,获得积分10
1秒前
1秒前
mammer发布了新的文献求助10
1秒前
FashionBoy应助随风采纳,获得10
1秒前
斯文败类应助普鲁卡因采纳,获得10
2秒前
木木发布了新的文献求助10
2秒前
516165165发布了新的文献求助10
2秒前
Lucas应助刘某采纳,获得10
2秒前
大胆绮应助asri1234采纳,获得20
2秒前
ZZ发布了新的文献求助10
3秒前
脑洞疼应助卢建军采纳,获得10
3秒前
思源应助123采纳,获得10
3秒前
ouLniM发布了新的文献求助10
3秒前
香蕉觅云应助何raven采纳,获得10
4秒前
穆若完成签到,获得积分10
4秒前
4秒前
Flying016发布了新的文献求助10
4秒前
CipherSage应助执着的笑南采纳,获得10
4秒前
4秒前
Faith完成签到,获得积分10
5秒前
吴青发布了新的文献求助200
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
xikawu完成签到,获得积分10
7秒前
9秒前
Ying莹完成签到 ,获得积分10
9秒前
516165165完成签到,获得积分10
9秒前
leezz完成签到,获得积分10
9秒前
PSA发布了新的文献求助10
9秒前
黄小黄发布了新的文献求助10
10秒前
10秒前
七月完成签到,获得积分10
10秒前
科研通AI2S应助聪明帅哥采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5759795
求助须知:如何正确求助?哪些是违规求助? 5522143
关于积分的说明 15395458
捐赠科研通 4896764
什么是DOI,文献DOI怎么找? 2633888
邀请新用户注册赠送积分活动 1581947
关于科研通互助平台的介绍 1537419