Identification of Protein Complexes by Using a Spatial and Temporal Active Protein Interaction Network

计算机科学 鉴定(生物学) 功能(生物学) 聚类分析 基因本体论 计算生物学 数据挖掘 系统生物学 交互网络 生物网络 人工智能 基因 生物 遗传学 基因表达 植物
作者
Min Li,Xiangmao Meng,Ruiqing Zheng,Fang‐Xiang Wu,Yaohang Li,Yi Pan,Jianxin Wang
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:17 (3): 817-827 被引量:26
标识
DOI:10.1109/tcbb.2017.2749571
摘要

The rapid development of proteomics and high-throughput technologies has produced a large amount of Protein-Protein Interaction (PPI) data, which makes it possible for considering dynamic properties of protein interaction networks (PINs) instead of static properties. Identification of protein complexes from dynamic PINs becomes a vital scientific problem for understanding cellular life in the post genome era. Up to now, plenty of models or methods have been proposed for the construction of dynamic PINs to identify protein complexes. However, most of the constructed dynamic PINs just focus on the temporal dynamic information and thus overlook the spatial dynamic information of the complex biological systems. To address the limitation of the existing dynamic PIN analysis approaches, in this paper, we propose a new model-based scheme for the construction of the Spatial and Temporal Active Protein Interaction Network (ST-APIN) by integrating time-course gene expression data and subcellular location information. To evaluate the efficiency of ST-APIN, the commonly used classical clustering algorithm MCL is adopted to identify protein complexes from ST-APIN and the other three dynamic PINs, NF-APIN, DPIN, and TC-PIN. The experimental results show that, the performance of MCL on ST-APIN outperforms those on the other three dynamic PINs in terms of matching with known complexes, sensitivity, specificity, and f-measure. Furthermore, we evaluate the identified protein complexes by Gene Ontology (GO) function enrichment analysis. The validation shows that the identified protein complexes from ST-APIN are more biologically significant. This study provides a general paradigm for constructing the ST-APINs, which is essential for further understanding of molecular systems and the biomedical mechanism of complex diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
下不上文献的大越完成签到,获得积分10
刚刚
上官若男应助乾乾采纳,获得10
刚刚
baocq完成签到,获得积分10
刚刚
2秒前
hardworkcd完成签到,获得积分10
2秒前
劲秉给吴祥佳的求助进行了留言
3秒前
小强强发布了新的文献求助10
3秒前
风筝完成签到,获得积分10
3秒前
4秒前
高兴123发布了新的文献求助10
5秒前
小羊完成签到 ,获得积分10
6秒前
研友_VZG7GZ应助大胆的雁桃采纳,获得10
6秒前
含蓄老黑完成签到,获得积分10
6秒前
JamesPei应助DZQ采纳,获得10
7秒前
遇上就这样吧给GY的求助进行了留言
7秒前
7秒前
8秒前
大力奇迹发布了新的文献求助10
8秒前
darling完成签到,获得积分10
8秒前
ganchao1776发布了新的文献求助10
9秒前
小马甲应助丁言笑采纳,获得10
10秒前
orixero应助娜行采纳,获得10
10秒前
10秒前
宋声声完成签到,获得积分10
11秒前
wei完成签到,获得积分10
12秒前
cmh发布了新的文献求助10
12秒前
静oo完成签到,获得积分10
12秒前
ILS完成签到 ,获得积分10
13秒前
13秒前
田様应助云泥采纳,获得10
13秒前
14秒前
15秒前
weirdo完成签到 ,获得积分10
15秒前
ding应助哇owao采纳,获得10
16秒前
zriverm发布了新的文献求助10
16秒前
17秒前
Ricef完成签到 ,获得积分10
18秒前
灰灰发布了新的文献求助10
18秒前
汉堡包应助立军采纳,获得10
18秒前
欢喜念双发布了新的文献求助10
18秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3669260
求助须知:如何正确求助?哪些是违规求助? 3227048
关于积分的说明 9772980
捐赠科研通 2936994
什么是DOI,文献DOI怎么找? 1609042
邀请新用户注册赠送积分活动 760086
科研通“疑难数据库(出版商)”最低求助积分说明 735748