Identification of Protein Complexes by Using a Spatial and Temporal Active Protein Interaction Network

计算机科学 鉴定(生物学) 功能(生物学) 聚类分析 基因本体论 计算生物学 数据挖掘 系统生物学 交互网络 生物网络 人工智能 基因 生物 遗传学 基因表达 植物
作者
Min Li,Xiangmao Meng,Ruiqing Zheng,Fang‐Xiang Wu,Yaohang Li,Yi Pan,Jianxin Wang
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:17 (3): 817-827 被引量:26
标识
DOI:10.1109/tcbb.2017.2749571
摘要

The rapid development of proteomics and high-throughput technologies has produced a large amount of Protein-Protein Interaction (PPI) data, which makes it possible for considering dynamic properties of protein interaction networks (PINs) instead of static properties. Identification of protein complexes from dynamic PINs becomes a vital scientific problem for understanding cellular life in the post genome era. Up to now, plenty of models or methods have been proposed for the construction of dynamic PINs to identify protein complexes. However, most of the constructed dynamic PINs just focus on the temporal dynamic information and thus overlook the spatial dynamic information of the complex biological systems. To address the limitation of the existing dynamic PIN analysis approaches, in this paper, we propose a new model-based scheme for the construction of the Spatial and Temporal Active Protein Interaction Network (ST-APIN) by integrating time-course gene expression data and subcellular location information. To evaluate the efficiency of ST-APIN, the commonly used classical clustering algorithm MCL is adopted to identify protein complexes from ST-APIN and the other three dynamic PINs, NF-APIN, DPIN, and TC-PIN. The experimental results show that, the performance of MCL on ST-APIN outperforms those on the other three dynamic PINs in terms of matching with known complexes, sensitivity, specificity, and f-measure. Furthermore, we evaluate the identified protein complexes by Gene Ontology (GO) function enrichment analysis. The validation shows that the identified protein complexes from ST-APIN are more biologically significant. This study provides a general paradigm for constructing the ST-APINs, which is essential for further understanding of molecular systems and the biomedical mechanism of complex diseases.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
华仔应助顺利秋灵采纳,获得10
1秒前
1秒前
wyh完成签到 ,获得积分10
1秒前
东石头发布了新的文献求助10
2秒前
kou发布了新的文献求助10
2秒前
2秒前
2秒前
不甜的唐完成签到,获得积分10
3秒前
慕青应助还单身的严青采纳,获得10
3秒前
3秒前
阔达雪碧发布了新的文献求助10
4秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
苹果不去想橘子的问题完成签到,获得积分10
6秒前
6秒前
realityjunky完成签到,获得积分10
6秒前
芙蓉发布了新的文献求助10
6秒前
YM发布了新的文献求助10
7秒前
7秒前
lcj发布了新的文献求助10
8秒前
丘比特应助Atlantic采纳,获得10
8秒前
8秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
am发布了新的文献求助10
9秒前
9秒前
乐乐应助CHL5722采纳,获得10
9秒前
邓佳鑫Alan应助iiLI采纳,获得10
9秒前
10秒前
10秒前
放放发布了新的文献求助10
10秒前
10秒前
长安完成签到,获得积分20
10秒前
彭于晏应助卖萌的秋田采纳,获得10
11秒前
12秒前
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5656374
求助须知:如何正确求助?哪些是违规求助? 4803112
关于积分的说明 15075686
捐赠科研通 4814650
什么是DOI,文献DOI怎么找? 2575863
邀请新用户注册赠送积分活动 1531210
关于科研通互助平台的介绍 1489805