Identification of Protein Complexes by Using a Spatial and Temporal Active Protein Interaction Network

计算机科学 鉴定(生物学) 功能(生物学) 聚类分析 基因本体论 计算生物学 数据挖掘 系统生物学 交互网络 生物网络 人工智能 基因 生物 遗传学 基因表达 植物
作者
Min Li,Xiangmao Meng,Ruiqing Zheng,Fang‐Xiang Wu,Yaohang Li,Yi Pan,Jianxin Wang
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:17 (3): 817-827 被引量:26
标识
DOI:10.1109/tcbb.2017.2749571
摘要

The rapid development of proteomics and high-throughput technologies has produced a large amount of Protein-Protein Interaction (PPI) data, which makes it possible for considering dynamic properties of protein interaction networks (PINs) instead of static properties. Identification of protein complexes from dynamic PINs becomes a vital scientific problem for understanding cellular life in the post genome era. Up to now, plenty of models or methods have been proposed for the construction of dynamic PINs to identify protein complexes. However, most of the constructed dynamic PINs just focus on the temporal dynamic information and thus overlook the spatial dynamic information of the complex biological systems. To address the limitation of the existing dynamic PIN analysis approaches, in this paper, we propose a new model-based scheme for the construction of the Spatial and Temporal Active Protein Interaction Network (ST-APIN) by integrating time-course gene expression data and subcellular location information. To evaluate the efficiency of ST-APIN, the commonly used classical clustering algorithm MCL is adopted to identify protein complexes from ST-APIN and the other three dynamic PINs, NF-APIN, DPIN, and TC-PIN. The experimental results show that, the performance of MCL on ST-APIN outperforms those on the other three dynamic PINs in terms of matching with known complexes, sensitivity, specificity, and f-measure. Furthermore, we evaluate the identified protein complexes by Gene Ontology (GO) function enrichment analysis. The validation shows that the identified protein complexes from ST-APIN are more biologically significant. This study provides a general paradigm for constructing the ST-APINs, which is essential for further understanding of molecular systems and the biomedical mechanism of complex diseases.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助直率的外套采纳,获得10
1秒前
1秒前
2秒前
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
自行车完成签到,获得积分20
3秒前
3秒前
华仔应助zky采纳,获得10
3秒前
橙汁摇一摇完成签到 ,获得积分10
4秒前
4秒前
4秒前
4秒前
wangly发布了新的文献求助10
5秒前
6秒前
JJ发布了新的文献求助10
7秒前
7秒前
7秒前
satisusu完成签到 ,获得积分10
7秒前
在水一方应助自行车采纳,获得10
8秒前
Facbiu完成签到,获得积分20
8秒前
FashionBoy应助LXx采纳,获得10
9秒前
9秒前
孔半仙发布了新的文献求助10
9秒前
10秒前
小二郎应助文献采纳,获得10
10秒前
dudu完成签到,获得积分20
10秒前
10秒前
11秒前
斯文败类应助开心采纳,获得10
11秒前
13秒前
13秒前
13秒前
四川南丁格尔完成签到,获得积分10
13秒前
13秒前
newplayer完成签到,获得积分10
14秒前
李健应助小杨采纳,获得10
14秒前
xxcc12356发布了新的文献求助10
14秒前
14秒前
充电宝应助小江不饿采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5680387
求助须知:如何正确求助?哪些是违规求助? 4998746
关于积分的说明 15172902
捐赠科研通 4840349
什么是DOI,文献DOI怎么找? 2593972
邀请新用户注册赠送积分活动 1546968
关于科研通互助平台的介绍 1504989