Identification of Protein Complexes by Using a Spatial and Temporal Active Protein Interaction Network

计算机科学 鉴定(生物学) 功能(生物学) 聚类分析 基因本体论 计算生物学 数据挖掘 系统生物学 交互网络 生物网络 人工智能 基因 生物 遗传学 基因表达 植物
作者
Min Li,Xiangmao Meng,Ruiqing Zheng,Fang‐Xiang Wu,Yaohang Li,Yi Pan,Jianxin Wang
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:17 (3): 817-827 被引量:26
标识
DOI:10.1109/tcbb.2017.2749571
摘要

The rapid development of proteomics and high-throughput technologies has produced a large amount of Protein-Protein Interaction (PPI) data, which makes it possible for considering dynamic properties of protein interaction networks (PINs) instead of static properties. Identification of protein complexes from dynamic PINs becomes a vital scientific problem for understanding cellular life in the post genome era. Up to now, plenty of models or methods have been proposed for the construction of dynamic PINs to identify protein complexes. However, most of the constructed dynamic PINs just focus on the temporal dynamic information and thus overlook the spatial dynamic information of the complex biological systems. To address the limitation of the existing dynamic PIN analysis approaches, in this paper, we propose a new model-based scheme for the construction of the Spatial and Temporal Active Protein Interaction Network (ST-APIN) by integrating time-course gene expression data and subcellular location information. To evaluate the efficiency of ST-APIN, the commonly used classical clustering algorithm MCL is adopted to identify protein complexes from ST-APIN and the other three dynamic PINs, NF-APIN, DPIN, and TC-PIN. The experimental results show that, the performance of MCL on ST-APIN outperforms those on the other three dynamic PINs in terms of matching with known complexes, sensitivity, specificity, and f-measure. Furthermore, we evaluate the identified protein complexes by Gene Ontology (GO) function enrichment analysis. The validation shows that the identified protein complexes from ST-APIN are more biologically significant. This study provides a general paradigm for constructing the ST-APINs, which is essential for further understanding of molecular systems and the biomedical mechanism of complex diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
张瑞锋完成签到,获得积分10
刚刚
1秒前
4秒前
5秒前
ajiwjn发布了新的文献求助30
6秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
9秒前
10秒前
10秒前
猩猩发布了新的文献求助10
11秒前
在水一方应助小麦ime采纳,获得10
12秒前
odinsnow发布了新的文献求助10
12秒前
WSYang完成签到,获得积分10
12秒前
李顺杰发布了新的文献求助10
13秒前
虚幻向秋完成签到,获得积分10
13秒前
AWESOME Ling发布了新的文献求助10
14秒前
orixero应助悲凉的世倌采纳,获得30
14秒前
乐乐应助pbj采纳,获得10
15秒前
15秒前
yang发布了新的文献求助10
17秒前
丘比特应助载荷采纳,获得10
18秒前
AWESOME Ling完成签到,获得积分10
19秒前
Hello应助文医生采纳,获得10
20秒前
20秒前
皮皮发布了新的文献求助10
21秒前
ajiwjn完成签到,获得积分10
21秒前
灰太狼完成签到 ,获得积分10
21秒前
清蒸深海鱼完成签到,获得积分10
21秒前
123完成签到,获得积分10
24秒前
25秒前
桃喜芒芒完成签到,获得积分20
25秒前
26秒前
量子星尘发布了新的文献求助10
26秒前
27秒前
传奇3应助odinsnow采纳,获得10
27秒前
爆米花应助enolgoy采纳,获得30
27秒前
27秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5492914
求助须知:如何正确求助?哪些是违规求助? 4590801
关于积分的说明 14432672
捐赠科研通 4523483
什么是DOI,文献DOI怎么找? 2478348
邀请新用户注册赠送积分活动 1463425
关于科研通互助平台的介绍 1436084