Identification of Protein Complexes by Using a Spatial and Temporal Active Protein Interaction Network

计算机科学 鉴定(生物学) 功能(生物学) 聚类分析 基因本体论 计算生物学 数据挖掘 系统生物学 交互网络 生物网络 人工智能 基因 生物 遗传学 基因表达 植物
作者
Min Li,Xiangmao Meng,Ruiqing Zheng,Fang‐Xiang Wu,Yaohang Li,Yi Pan,Jianxin Wang
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:17 (3): 817-827 被引量:26
标识
DOI:10.1109/tcbb.2017.2749571
摘要

The rapid development of proteomics and high-throughput technologies has produced a large amount of Protein-Protein Interaction (PPI) data, which makes it possible for considering dynamic properties of protein interaction networks (PINs) instead of static properties. Identification of protein complexes from dynamic PINs becomes a vital scientific problem for understanding cellular life in the post genome era. Up to now, plenty of models or methods have been proposed for the construction of dynamic PINs to identify protein complexes. However, most of the constructed dynamic PINs just focus on the temporal dynamic information and thus overlook the spatial dynamic information of the complex biological systems. To address the limitation of the existing dynamic PIN analysis approaches, in this paper, we propose a new model-based scheme for the construction of the Spatial and Temporal Active Protein Interaction Network (ST-APIN) by integrating time-course gene expression data and subcellular location information. To evaluate the efficiency of ST-APIN, the commonly used classical clustering algorithm MCL is adopted to identify protein complexes from ST-APIN and the other three dynamic PINs, NF-APIN, DPIN, and TC-PIN. The experimental results show that, the performance of MCL on ST-APIN outperforms those on the other three dynamic PINs in terms of matching with known complexes, sensitivity, specificity, and f-measure. Furthermore, we evaluate the identified protein complexes by Gene Ontology (GO) function enrichment analysis. The validation shows that the identified protein complexes from ST-APIN are more biologically significant. This study provides a general paradigm for constructing the ST-APINs, which is essential for further understanding of molecular systems and the biomedical mechanism of complex diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jizhiyu完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
刚刚
今后应助清欢采纳,获得10
1秒前
1秒前
SciGPT应助Baymax采纳,获得10
1秒前
王王的狗子完成签到 ,获得积分10
1秒前
1秒前
LY完成签到,获得积分20
2秒前
乐乐应助浓缩蓝鲸采纳,获得10
2秒前
langbuyu完成签到,获得积分10
2秒前
Rui完成签到,获得积分10
3秒前
秦慧萍完成签到,获得积分10
3秒前
sansronds完成签到,获得积分10
4秒前
Katyusha发布了新的文献求助10
4秒前
Nolan完成签到,获得积分10
4秒前
李想的李完成签到 ,获得积分10
4秒前
fqpang完成签到 ,获得积分10
5秒前
饱满冥茗完成签到,获得积分10
5秒前
lanheqingniao完成签到,获得积分10
6秒前
冬瓜有内涵呐完成签到,获得积分10
6秒前
共享精神应助天地不语采纳,获得10
6秒前
6秒前
迟大猫应助idemipere采纳,获得10
6秒前
坚强的纸飞机完成签到,获得积分10
6秒前
LiPanPan李畔畔完成签到 ,获得积分20
7秒前
量子星尘发布了新的文献求助10
7秒前
欢喜的毛豆完成签到 ,获得积分10
8秒前
xmj_sky完成签到,获得积分10
8秒前
8秒前
8秒前
一苇难渡发布了新的文献求助10
8秒前
莫愁一舞完成签到,获得积分10
9秒前
shamy夫妇完成签到,获得积分10
9秒前
慕青应助饱满冥茗采纳,获得10
9秒前
司空康完成签到,获得积分10
9秒前
结实擎苍完成签到 ,获得积分10
9秒前
纯真雁菱完成签到,获得积分10
10秒前
ww完成签到,获得积分20
10秒前
lyl19880908应助jinjun采纳,获得10
10秒前
bobo完成签到,获得积分10
10秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3666840
求助须知:如何正确求助?哪些是违规求助? 3225706
关于积分的说明 9764854
捐赠科研通 2935572
什么是DOI,文献DOI怎么找? 1607763
邀请新用户注册赠送积分活动 759353
科研通“疑难数据库(出版商)”最低求助积分说明 735287