退火(玻璃)
兴奋剂
制作
碲化镉光电
人工神经网络
解算器
材料科学
模拟退火
人工智能
计算机科学
铜
深度学习
径向基函数
光电子学
机器学习
生物系统
算法
复合材料
冶金
医学
替代医学
病理
生物
程序设计语言
作者
Ghaith Salman,Stephen M. Goodnick,Abdul R. Shaik,Dragica Vasileska
标识
DOI:10.1109/pvsc43889.2021.9518455
摘要
In this work we use machine learning to extract actual Cu doping profiles that result from the process of diffusion annealing and cool-down in the fabrication sequence of CdTe solar cells. We use two deep learning neural network models (Artificial Neural Network (ANN) model using a Keras API with TensorFlow backend and a Radial Basis Function Network (RBFN) model) to predict the Cu doping profiles for different temperatures and duration of the annealing process. We find excellent agreement between the simulated results obtained with the PVRD-FASP Solver and predicted values. It takes significant amount of time to generate with the PVRD-FASP Solver the Cu doping profiles given the initial conditions. The generation of the same with machine learning is almost instantaneous and can serve as an excellent simulation tool to guide future fabrication of optimal doping profiles in CdTe solar cells.
科研通智能强力驱动
Strongly Powered by AbleSci AI