清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Insights of an AI agent via analysis of prediction errors: a case study of fluence map prediction for radiation therapy planning

通量 计算机科学 算法 频域 放射治疗计划 人工智能 数学 放射治疗 光学 计算机视觉 物理 医学 放射科 激光器
作者
Xinyi Li,Q Wu,Q Wu,Chunhao Wang,Yang Sheng,Wentao Wang,Hunter Stephens,F Yin,Yaorong Ge
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:66 (23): 23NT01-23NT01 被引量:2
标识
DOI:10.1088/1361-6560/ac3841
摘要

Purpose.We have previously reported an artificial intelligence (AI) agent that automatically generates intensity-modulated radiation therapy (IMRT) plans via fluence map prediction, by-passing inverse planning. This AI agent achieved clinically comparable quality for prostate cases, but its performance on head-and-neck patients leaves room for improvement. This study aims to collect insights of the deep-learning-based (DL-based) fluence map prediction model by systematically analyzing its prediction errors.Methods.From the modeling perspective, the DL model's output is the fluence maps of IMRT plans. However, from the clinical planning perspective, the plan quality evaluation should be based on the clinical dosimetric criteria such as dose-volume histograms. To account for the complex and non-intuitive relationships between fluence map prediction errors and the corresponding dose distribution changes, we propose a novel error analysis approach that systematically examines plan dosimetric changes that are induced by varying amounts of fluence prediction errors. We investigated four decomposition modes of model prediction errors. The two spatial domain decompositions are based on fluence intensity and fluence gradient. The two frequency domain decompositions are based on Fourier-space banded frequency rings and Fourier-space truncated low-frequency disks. The decomposed error was analyzed for its impact on the resulting plans' dosimetric metrics. The analysis was conducted on 15 test cases spared from the 200 training and 16 validation cases used to train the model.Results.Most planning target volume metrics were significantly correlated with most error decompositions. The Fourier space disk radii had the largest Spearman's coefficients. The low-frequency region within a disk of ∼20% Fourier space contained most of errors that impact overall plan quality.Conclusions.This study demonstrates the feasibility of using fluence map prediction error analysis to understand the AI agent's performance. Such insights will help fine-tune the DL models in architecture design and loss function selection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sunny完成签到,获得积分10
22秒前
咯咯咯完成签到 ,获得积分10
26秒前
lyj完成签到 ,获得积分10
27秒前
jlwang完成签到,获得积分10
54秒前
1分钟前
人生苦短完成签到,获得积分10
1分钟前
NexusExplorer应助Kevin采纳,获得10
1分钟前
小二郎应助ybwei2008_163采纳,获得10
1分钟前
大水完成签到 ,获得积分10
1分钟前
善学以致用应助ybwei2008_163采纳,获得10
1分钟前
1分钟前
ybwei2008_163发布了新的文献求助10
1分钟前
2分钟前
ybwei2008_163发布了新的文献求助10
2分钟前
科研通AI2S应助Emad0gh采纳,获得10
2分钟前
2分钟前
2分钟前
慕容飞凤完成签到,获得积分10
2分钟前
沉默的友安完成签到 ,获得积分10
2分钟前
ybwei2008_163完成签到,获得积分20
2分钟前
黄博完成签到 ,获得积分10
2分钟前
陌上之心完成签到 ,获得积分10
2分钟前
woods完成签到,获得积分10
2分钟前
chichenglin完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
3分钟前
香菜精发布了新的文献求助10
3分钟前
香菜精完成签到,获得积分10
3分钟前
kakak发布了新的文献求助10
3分钟前
会笑的蜗牛完成签到 ,获得积分10
3分钟前
xxxqqq完成签到,获得积分10
3分钟前
kakak完成签到,获得积分20
3分钟前
乐乐完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
今后应助科研通管家采纳,获得10
3分钟前
nenoaowu应助科研通管家采纳,获得50
3分钟前
dreamwalk完成签到 ,获得积分10
4分钟前
4分钟前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
建筑材料检测与应用 370
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3830505
求助须知:如何正确求助?哪些是违规求助? 3372815
关于积分的说明 10475456
捐赠科研通 3092626
什么是DOI,文献DOI怎么找? 1702234
邀请新用户注册赠送积分活动 818839
科研通“疑难数据库(出版商)”最低求助积分说明 771101