Developing and validating deep learning-based heterogeneous model to improve diagnostic performance of ultrasound elastography for axillary lymph node metastasis of early breast cancer.

医学 乳腺癌 接收机工作特性 弹性成像 放射科 队列 转移 超声波 置信区间 癌症 内科学
作者
Jian Li,Nian Cai,Xie Zeming,Zhou Jingwen,Huang Ke-min
出处
期刊:Journal of Clinical Oncology [Lippincott Williams & Wilkins]
卷期号:39 (15_suppl): e12583-e12583 被引量:1
标识
DOI:10.1200/jco.2021.39.15_suppl.e12583
摘要

e12583 Background: To improve the performance of ultrasound (US) for diagnosing metastatic axillary lymph node (ALN), machine learning was used to reveal the inherently medical hints from ultrasonic images and assist pre-treatment evaluation of ALN for patients with early breast cancer. Methods: A total of 214 eligible patients with 220 breast lesions, from whom 220 target ALNs of ipsilateral axillae underwent ultrasound elastography (UE), were prospectively recruited. Based on feature extraction and fusion of B-mode and shear wave elastography (SWE) images of 140 target ALNs using radiomics and deep learning, with reference to the axillary pathological evaluation from training cohort, a proposed deep learning-based heterogeneous model (DLHM) was established and then validated by a collection of B-mode and SWE images of 80 target ALNs from testing cohort. Performance was compared between UE based on radiological criteria and DLHM in terms of areas under the receiver operating characteristics curve (AUC), sensitivity, specificity, accuracy, negative predictive value, and positive predictive value for diagnosing ALN metastasis. Results: DLHM achieved an excellent performance for both training and validation cohorts. In the prospectively testing cohort, DLHM demonstrated the best diagnostic performance with AUC of 0.911(95% confidence interval [CI]: 0.826, 0.963) in identifying metastatic ALN, which significantly outperformed UE in terms of AUC (0.707, 95% CI: 0.595, 0.804, P<0.001). Conclusions: DLHM provides an effective, accurate and non-invasive preoperative method for assisting the diagnosis of ALN metastasis in patients with early breast cancer.[Table: see text]

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
花花的明发布了新的文献求助10
1秒前
1秒前
老张发布了新的文献求助10
2秒前
所所应助axin采纳,获得30
3秒前
3秒前
无尘完成签到 ,获得积分10
4秒前
gggggd发布了新的文献求助10
4秒前
三方发布了新的文献求助50
4秒前
胖子东完成签到,获得积分10
4秒前
5秒前
8秒前
孝顺的啤酒完成签到,获得积分10
8秒前
Momo发布了新的文献求助10
9秒前
vannie发布了新的文献求助10
9秒前
10秒前
hhh发布了新的文献求助10
10秒前
11秒前
木今发布了新的文献求助20
12秒前
12秒前
13秒前
discovery发布了新的文献求助10
13秒前
jsdiohfsiodhg发布了新的文献求助10
13秒前
14秒前
15秒前
15秒前
TobyGarfielD发布了新的文献求助10
17秒前
爆米花应助风中的爆米花采纳,获得10
18秒前
传奇3应助不朽丶哀默采纳,获得10
19秒前
20秒前
大宝君应助裴泡泡采纳,获得20
20秒前
大个应助孝顺的啤酒采纳,获得10
21秒前
科研通AI5应助gggggd采纳,获得10
21秒前
21秒前
mito发布了新的文献求助10
21秒前
22秒前
猪猪hero发布了新的文献求助10
23秒前
24秒前
vk发布了新的文献求助10
24秒前
TobyGarfielD完成签到,获得积分10
25秒前
所所应助陈运气采纳,获得10
27秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Robot-supported joining of reinforcement textiles with one-sided sewing heads 780
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
Grammar in Action:Building comprehensive grammars of talk-in-interaction 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4164460
求助须知:如何正确求助?哪些是违规求助? 3699903
关于积分的说明 11681850
捐赠科研通 3389399
什么是DOI,文献DOI怎么找? 1858789
邀请新用户注册赠送积分活动 919274
科研通“疑难数据库(出版商)”最低求助积分说明 831988