Development and validation of deep learning classifiers to detect Epstein-Barr virus and microsatellite instability status in gastric cancer: a retrospective multicentre cohort study

微卫星不稳定性 医学 回顾性队列研究 接收机工作特性 内科学 癌症 微卫星 队列研究 队列 肿瘤科 胃肠病学 生物 遗传学 基因 等位基因
作者
Hannah Sophie Muti,Lara R. Heij,Gisela Keller,Meike Kohlruss,Rupert Langer,Bastian Dislich,Jae‐Ho Cheong,Young–Woo Kim,Hyunki Kim,Myeong‐Cherl Kook,David Cunningham,William Allum,Ruth E. Langley,Matthew Nankivell,Philip Quirke,Jeremy D. Hayden,Nicholas P. West,Andrew J. Irvine,Takaki Yoshikawa,Takashi Oshima,Ralf Huss,Bianca Grosser,Franco Roviello,Alessia D’Ignazio,Alexander Quaas,Hakan Alakus,Xiuxiang Tan,Alexander T. Pearson,Tom Luedde,Matthias Ebert,Dirk Jäger,Christian Trautwein,Nadine T. Gaisa,Heike I. Grabsch,Jakob Nikolas Kather
出处
期刊:The Lancet Digital Health [Elsevier BV]
卷期号:3 (10): e654-e664 被引量:94
标识
DOI:10.1016/s2589-7500(21)00133-3
摘要

BackgroundResponse to immunotherapy in gastric cancer is associated with microsatellite instability (or mismatch repair deficiency) and Epstein-Barr virus (EBV) positivity. We therefore aimed to develop and validate deep learning-based classifiers to detect microsatellite instability and EBV status from routine histology slides.MethodsIn this retrospective, multicentre study, we collected tissue samples from ten cohorts of patients with gastric cancer from seven countries (South Korea, Switzerland, Japan, Italy, Germany, the UK and the USA). We trained a deep learning-based classifier to detect microsatellite instability and EBV positivity from digitised, haematoxylin and eosin stained resection slides without annotating tumour containing regions. The performance of the classifier was assessed by within-cohort cross-validation in all ten cohorts and by external validation, for which we split the cohorts into a five-cohort training dataset and a five-cohort test dataset. We measured the area under the receiver operating curve (AUROC) for detection of microsatellite instability and EBV status. Microsatellite instability and EBV status were determined to be detectable if the lower bound of the 95% CI for the AUROC was above 0·5.FindingsAcross the ten cohorts, our analysis included 2823 patients with known microsatellite instability status and 2685 patients with known EBV status. In the within-cohort cross-validation, the deep learning-based classifier could detect microsatellite instability status in nine of ten cohorts, with AUROCs ranging from 0·597 (95% CI 0·522–0·737) to 0·836 (0·795–0·880) and EBV status in five of eight cohorts, with AUROCs ranging from 0·819 (0·752–0·841) to 0·897 (0·513–0·966). Training a classifier on the pooled training dataset and testing it on the five remaining cohorts resulted in high classification performance with AUROCs ranging from 0·723 (95% CI 0·676–0·794) to 0·863 (0·747–0·969) for detection of microsatellite instability and from 0·672 (0·403–0·989) to 0·859 (0·823–0·919) for detection of EBV status.InterpretationClassifiers became increasingly robust when trained on pooled cohorts. After prospective validation, this deep learning-based tissue classification system could be used as an inexpensive predictive biomarker for immunotherapy in gastric cancer.FundingGerman Cancer Aid and German Federal Ministry of Health.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ace_killer完成签到,获得积分20
1秒前
Djo发布了新的文献求助10
1秒前
777完成签到,获得积分10
1秒前
冷傲奇异果完成签到 ,获得积分20
3秒前
derrick完成签到,获得积分10
3秒前
大模型应助dddd采纳,获得10
4秒前
5秒前
迅速的幻雪完成签到 ,获得积分10
6秒前
casting完成签到,获得积分10
6秒前
冷傲奇异果关注了科研通微信公众号
7秒前
7秒前
JudgeGoodwin完成签到,获得积分10
8秒前
8秒前
斯文败类应助skyleon采纳,获得10
9秒前
无欲无求傻傻完成签到,获得积分10
10秒前
10秒前
11秒前
橙子橙子橙子完成签到,获得积分10
11秒前
12秒前
MosenL应助巴达天使采纳,获得10
12秒前
jibenkun完成签到,获得积分10
13秒前
14秒前
谨慎飞丹完成签到 ,获得积分10
14秒前
xzy998应助a_jumper采纳,获得10
15秒前
上善若水发布了新的文献求助10
15秒前
no_one发布了新的文献求助10
16秒前
18秒前
JOJO完成签到,获得积分10
18秒前
科研yu完成签到,获得积分10
18秒前
淡定的幻枫完成签到 ,获得积分10
18秒前
山猪吃细糠完成签到 ,获得积分10
19秒前
安静的乐松完成签到,获得积分10
21秒前
skyleon发布了新的文献求助10
23秒前
科研通AI2S应助霸气鞯采纳,获得10
24秒前
ZX0501完成签到,获得积分10
25秒前
英俊的铭应助上善若水采纳,获得10
27秒前
王南晰完成签到 ,获得积分10
27秒前
Lshyong完成签到 ,获得积分10
28秒前
28秒前
zhangkx23完成签到,获得积分10
30秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779439
求助须知:如何正确求助?哪些是违规求助? 3324973
关于积分的说明 10220672
捐赠科研通 3040111
什么是DOI,文献DOI怎么找? 1668560
邀请新用户注册赠送积分活动 798728
科研通“疑难数据库(出版商)”最低求助积分说明 758522