Emotion Recognition From EEG Signals of Hearing-Impaired People Using Stacking Ensemble Learning Framework Based on a Novel Brain Network

计算机科学 人工智能 脑电图 人工神经网络 集成学习 相关性 堆积 语音识别 模式识别(心理学) 心理学 情绪识别 听力学 神经科学 数学 医学 物理 核磁共振 几何学
作者
Qiaoju Kang,Qiang Gao,Yu Song,Zekun Tian,Yi Yang,Zemin Mao,Enzeng Dong
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:21 (20): 23245-23255 被引量:16
标识
DOI:10.1109/jsen.2021.3108471
摘要

Emotion recognition based on electroencephalography (EEG) signals has become an interesting research topic in the field of neuroscience, psychology, neural engineering, and computer science. However, the existing studies are mainly focused on normal or depression subjects, and few reports on hearing-impaired subjects. In this work, we have collected the EEG signals of 15 hearing-impaired subjects for categorizing three types of emotions (positive, neutral, and negative). To study the differences in functional connectivity between normal and hearing-impaired subjects under different emotional states, a novel brain network stacking ensemble learning framework was proposed. The phase-locking value (PLV) was utilized to calculate the correlation between EEG channels, and then we constructed a brain network using double thresholds. The spatial features of the brain network were extracted from the perspectives of local differentiation and global integration. In addition, the stacking ensemble learning framework was used to classify the fused features. To evaluate the proposed model, extensive experiments were carried out on the SEED dataset, and the result shows that the proposed method achieved superior performance than state-of-the-art models, in which the average classification accuracy is 0.955 (std: 0.052). In addition, the experimental results of hearing-impaired emotion recognition show that the average classification accuracy is 0.984 (std: 0.005). Finally, we investigated the activation patterns to reveal important brain regions and inter-channel relations about emotion recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助曲幻梅采纳,获得10
3秒前
赘婿应助野椒搞科研采纳,获得30
3秒前
3秒前
三胖完成签到,获得积分10
6秒前
朱华彪完成签到,获得积分10
6秒前
完美世界应助xueying6767采纳,获得10
8秒前
23333发布了新的文献求助10
8秒前
长江完成签到 ,获得积分10
9秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
冰魂应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
兴奋书雪完成签到,获得积分10
11秒前
传奇3应助科研通管家采纳,获得10
11秒前
FashionBoy应助科研通管家采纳,获得50
11秒前
科研通AI5应助科研通管家采纳,获得30
11秒前
斯文败类应助科研通管家采纳,获得10
12秒前
12秒前
充电宝应助科研通管家采纳,获得30
12秒前
所所应助科研通管家采纳,获得10
12秒前
23333完成签到,获得积分10
12秒前
芯子发布了新的文献求助10
15秒前
桌球有点蔡先生完成签到 ,获得积分10
17秒前
20秒前
21秒前
今天你看文献了吗完成签到 ,获得积分10
22秒前
22秒前
ss应助muriel采纳,获得10
25秒前
26秒前
曲幻梅发布了新的文献求助10
26秒前
devilito发布了新的文献求助10
27秒前
28秒前
LZQ发布了新的文献求助10
29秒前
kai发布了新的文献求助10
31秒前
芯子完成签到 ,获得积分20
32秒前
东少完成签到,获得积分10
35秒前
hsh发布了新的文献求助10
35秒前
38秒前
爱喝水发布了新的文献求助10
44秒前
44秒前
ss应助只只采纳,获得10
45秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778761
求助须知:如何正确求助?哪些是违规求助? 3324341
关于积分的说明 10217907
捐赠科研通 3039436
什么是DOI,文献DOI怎么找? 1668081
邀请新用户注册赠送积分活动 798544
科研通“疑难数据库(出版商)”最低求助积分说明 758415