How does the Facebook Algorithm rank the contents according to the interaction buttons?

排名(信息检索) 分类 内容(测量理论) 秩相关 心理学 社会化媒体 计算机科学 秩(图论) 内容分析 广告 社会心理学 情报检索 数学 人工智能 万维网 组合数学 机器学习 社会学 业务 数学分析 社会科学
作者
Dávid Pócs
标识
DOI:10.14293/s2199-1006.1.sor-.ppou7f9.v1
摘要

Objective: This research aimed at understanding how social media contents are ranked by the Facebook Algorithm according to interaction buttons. Thecorrelations between Facebook users' interactions and the organic reach of the given content canhelp to gain this aim. Methods: We included 1025 non-paid, Facebook posts (N=1025). We collected thefollowing data in the post level. “Organic reach” is the number of people who saw the given non-paid content. The organicreach consisted of “fanreach” and “non-fan reach” according to previous “pagelike” activity. Theinvestigated interaction data was thefollowing: “Facebook reactions” (e.g., “like”); “shares”; “comments”; “clicks”; and “negative Facebook interactions” (e.g.,posthides). Results: A significant negative correlation was found between organic reach and “like” reaction. We observed the strongest significant positive correlations of organic reach with “comments”, “haha” and “love” reactions. Furthermore, fanreach correlated positively with “comments”, “haha” and “love” reactions, while non-fan reach correlated positively with “shares” and “clicks”. Conclusions: Some interactions on a post level can have higher priority in content ranking: “comments”, “haha”, “love”, and “sad” reactions. This study has shown that “like” reactions and “shares” can have a lower priority in content ranking. Our results suggest that a further categorization to fan-specific interactions (“haha” and “love”reactions, “comments”) and non-fan-specific interactions (“shares” and “clicks”) is needed. Finally, „shares” can generate more non-fans, however, “shares” can result in fewer fans. Thisexploratory research offers animportant insight into the Facebook content ranking for public health professionals who design Facebook-based interventions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Rec完成签到 ,获得积分10
3秒前
Aruo发布了新的文献求助10
5秒前
于yu完成签到 ,获得积分10
7秒前
alex12259完成签到 ,获得积分10
8秒前
8秒前
8秒前
知名不具完成签到 ,获得积分10
8秒前
9秒前
Ghiocel发布了新的文献求助30
9秒前
GONG完成签到,获得积分20
9秒前
852应助纸速度采纳,获得10
10秒前
科研通AI2S应助翁雁丝采纳,获得10
10秒前
摆哥完成签到,获得积分10
11秒前
桐桐应助小樱颖子采纳,获得10
11秒前
科研通AI6应助小宝贝采纳,获得10
12秒前
wanci应助ZHOUZHOU采纳,获得30
13秒前
wuhao完成签到,获得积分10
14秒前
hahhahahh发布了新的文献求助10
14秒前
123完成签到,获得积分10
14秒前
许樟林发布了新的文献求助10
14秒前
sansan完成签到 ,获得积分10
15秒前
小天发布了新的文献求助10
15秒前
Aruo完成签到,获得积分10
16秒前
17秒前
8R60d8应助mumu采纳,获得10
18秒前
李细胞完成签到,获得积分10
19秒前
19秒前
Drwang完成签到,获得积分10
19秒前
20秒前
科目三应助hahhahahh采纳,获得10
20秒前
FY完成签到 ,获得积分10
21秒前
22秒前
春风不语发布了新的文献求助10
22秒前
sam发布了新的文献求助10
24秒前
455发布了新的文献求助10
24秒前
liu完成签到,获得积分10
24秒前
且是天下完成签到,获得积分10
26秒前
大猫完成签到 ,获得积分10
26秒前
科研通AI2S应助平常的如风采纳,获得10
27秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5060533
求助须知:如何正确求助?哪些是违规求助? 4284746
关于积分的说明 13352610
捐赠科研通 4102586
什么是DOI,文献DOI怎么找? 2246170
邀请新用户注册赠送积分活动 1251909
关于科研通互助平台的介绍 1182637