Use of Machine Learning Models to Predict Death After Acute Myocardial Infarction

医学 逻辑回归 机器学习 人工智能 梯度升压 心肌梗塞 急诊分诊台 内科学 胸痛 Boosting(机器学习) 急诊医学 计算机科学 随机森林
作者
Rohan Khera,Julian S. Haimovich,Nathan C. Hurley,Robert L. McNamara,John A. Spertus,Nihar R. Desai,John S. Rumsfeld,Frederick A. Masoudi,Chenxi Huang,Sharon‐Lise T. Normand,Bobak J. Mortazavi,Harlan M. Krumholz
出处
期刊:JAMA Cardiology [American Medical Association]
卷期号:6 (6): 633-633 被引量:180
标识
DOI:10.1001/jamacardio.2021.0122
摘要

Accurate prediction of adverse outcomes after acute myocardial infarction (AMI) can guide the triage of care services and shared decision-making, and novel methods hold promise for using existing data to generate additional insights.To evaluate whether contemporary machine learning methods can facilitate risk prediction by including a larger number of variables and identifying complex relationships between predictors and outcomes.This cohort study used the American College of Cardiology Chest Pain-MI Registry to identify all AMI hospitalizations between January 1, 2011, and December 31, 2016. Data analysis was performed from February 1, 2018, to October 22, 2020.Three machine learning models were developed and validated to predict in-hospital mortality based on patient comorbidities, medical history, presentation characteristics, and initial laboratory values. Models were developed based on extreme gradient descent boosting (XGBoost, an interpretable model), a neural network, and a meta-classifier model. Their accuracy was compared against the current standard developed using a logistic regression model in a validation sample.A total of 755 402 patients (mean [SD] age, 65 [13] years; 495 202 [65.5%] male) were identified during the study period. In independent validation, 2 machine learning models, gradient descent boosting and meta-classifier (combination including inputs from gradient descent boosting and a neural network), marginally improved discrimination compared with logistic regression (C statistic, 0.90 for best performing machine learning model vs 0.89 for logistic regression). Nearly perfect calibration in independent validation data was found in the XGBoost (slope of predicted to observed events, 1.01; 95% CI, 0.99-1.04) and the meta-classifier model (slope of predicted-to-observed events, 1.01; 95% CI, 0.99-1.02), with more precise classification across the risk spectrum. The XGBoost model reclassified 32 393 of 121 839 individuals (27%) and the meta-classifier model reclassified 30 836 of 121 839 individuals (25%) deemed at moderate to high risk for death in logistic regression as low risk, which were more consistent with the observed event rates.In this cohort study using a large national registry, none of the tested machine learning models were associated with substantive improvement in the discrimination of in-hospital mortality after AMI, limiting their clinical utility. However, compared with logistic regression, XGBoost and meta-classifier models, but not the neural network, offered improved resolution of risk for high-risk individuals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ldh032应助奥斯卡采纳,获得10
2秒前
小太阳完成签到,获得积分10
3秒前
1874发布了新的文献求助30
3秒前
jenningseastera应助草木采纳,获得10
6秒前
CodeCraft应助猪猪hero采纳,获得10
8秒前
9秒前
归尘应助高兴荔枝采纳,获得10
11秒前
赘婿应助高兴荔枝采纳,获得10
11秒前
科研通AI5应助谢佳冀采纳,获得10
11秒前
11秒前
where发布了新的文献求助10
14秒前
小邹完成签到,获得积分10
14秒前
陆晓亦完成签到,获得积分10
15秒前
16秒前
NEO发布了新的文献求助30
16秒前
菜籽发布了新的文献求助10
17秒前
Alexbirchurros完成签到 ,获得积分10
19秒前
1900191497完成签到,获得积分10
19秒前
默默的天德完成签到,获得积分10
21秒前
小医神僧发布了新的文献求助10
23秒前
科研小狗完成签到 ,获得积分10
23秒前
科研通AI5应助where采纳,获得10
25秒前
虹归于叶完成签到 ,获得积分10
25秒前
独特乘云完成签到,获得积分10
25秒前
H_C完成签到,获得积分20
29秒前
31秒前
谢佳冀发布了新的文献求助10
36秒前
36秒前
无限太阳完成签到,获得积分10
37秒前
1874完成签到 ,获得积分10
37秒前
小医神僧完成签到,获得积分10
38秒前
科研通AI2S应助菜籽采纳,获得10
40秒前
xr发布了新的文献求助10
40秒前
41秒前
44秒前
科研通AI5应助科研通管家采纳,获得10
46秒前
汉堡包应助科研通管家采纳,获得10
46秒前
科研通AI2S应助科研通管家采纳,获得10
46秒前
SciGPT应助科研通管家采纳,获得10
46秒前
zmnzmnzmn应助科研通管家采纳,获得10
46秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778099
求助须知:如何正确求助?哪些是违规求助? 3323764
关于积分的说明 10215701
捐赠科研通 3038943
什么是DOI,文献DOI怎么找? 1667723
邀请新用户注册赠送积分活动 798368
科研通“疑难数据库(出版商)”最低求助积分说明 758339