Using radiomics-based modelling to predict individual progression from mild cognitive impairment to Alzheimer’s disease

无线电技术 医学 疾病 认知障碍 内科学 认知 阿尔茨海默病 放射科 精神科
作者
Jiehui Jiang,Min Wang,Ian Alberts,Xiaoming Sun,Taoran Li,Axel Rominger,Chuantao Zuo,Ying Han,Kuangyu Shi,for the Alzheimer’s Disease Neuroim Initiative
出处
期刊:European Journal of Nuclear Medicine and Molecular Imaging [Springer Science+Business Media]
卷期号:49 (7): 2163-2173 被引量:31
标识
DOI:10.1007/s00259-022-05687-y
摘要

BackgroundPredicting the risk of disease progression from mild cognitive impairment (MCI) to Alzheimer’s disease (AD) has important clinical significance. This study aimed to provide a personalized MCI-to-AD conversion prediction via radiomics-based predictive modelling (RPM) with multicenter 18F-fluorodeoxyglucose positron emission tomography (FDG PET) data.MethodFDG PET and neuropsychological data of 884 subjects were collected from Huashan Hospital, Xuanwu Hospital, and from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. First, 34,400 radiomic features were extracted from the 80 regions of interest (ROIs) for all PET images. These features were then concatenated for feature selection, and an RPM model was constructed and validated on the ADNI dataset. In addition, we used clinical data and the routine semiquantification index (standard uptake value ratio, SUVR) to establish clinical and SUVR Cox models for further comparison. FDG images from local hospitals were used to explore RPM performance in a separate cohort of individuals with healthy controls and different cognitive levels (a complete AD continuum). Finally, correlation analysis was conducted between the radiomic biomarkers and neuropsychological assessments.ResultsThe experimental results showed that the predictive performance of the RPM Cox model was better than that of other Cox models. In the validation dataset, Harrell’s consistency coefficient of the RPM model was 0.703 ± 0.002, while those of the clinical and SUVR models were 0.632 ± 0.006 and 0.683 ± 0.009, respectively. Moreover, most crucial imaging biomarkers were significantly different at different cognitive stages and significantly correlated with cognitive disease severity.ConclusionThe preliminary results demonstrated that the developed RPM approach has the potential to monitor progression in high-risk populations with AD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lzy完成签到 ,获得积分10
刚刚
CipherSage应助西西采纳,获得10
1秒前
3秒前
顺顺完成签到,获得积分10
6秒前
7秒前
乐乐应助Sean采纳,获得10
9秒前
10秒前
柚子发布了新的文献求助10
10秒前
皮皮鲁完成签到,获得积分10
11秒前
可飞完成签到,获得积分10
12秒前
pgg完成签到,获得积分20
14秒前
王羊补牢完成签到 ,获得积分10
14秒前
Narcissus完成签到,获得积分10
17秒前
Dream完成签到,获得积分0
17秒前
19秒前
冰魂应助科研通管家采纳,获得10
19秒前
Akim应助科研通管家采纳,获得30
19秒前
科研通AI5应助科研通管家采纳,获得10
19秒前
小马甲应助科研通管家采纳,获得10
19秒前
脑洞疼应助科研通管家采纳,获得30
19秒前
qiao应助科研通管家采纳,获得10
19秒前
19秒前
杨少博完成签到,获得积分20
20秒前
23秒前
zx关闭了zx文献求助
23秒前
lucy发布了新的文献求助10
24秒前
李爱国应助cst采纳,获得10
26秒前
午休完成签到,获得积分20
27秒前
闫晓丽发布了新的文献求助10
27秒前
27秒前
曾珍完成签到 ,获得积分10
32秒前
共享精神应助机器狗采纳,获得10
35秒前
超级李包包完成签到,获得积分10
35秒前
阿司匹林发布了新的文献求助10
38秒前
39秒前
小五完成签到 ,获得积分10
43秒前
李卿卫发布了新的文献求助10
44秒前
45秒前
陳新儒完成签到,获得积分10
45秒前
闫晓丽完成签到,获得积分20
48秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779565
求助须知:如何正确求助?哪些是违规求助? 3325025
关于积分的说明 10221059
捐赠科研通 3040157
什么是DOI,文献DOI怎么找? 1668640
邀请新用户注册赠送积分活动 798728
科研通“疑难数据库(出版商)”最低求助积分说明 758522