Mapping pediatric spinal cord development with age

脊髓 医学 白质 放射科 解剖
作者
Ashwin Kumar,Simon Vandekar,Kurt G. Schilling,Aashim Bhatia,Bennett A. Landman,Seth Smith
标识
DOI:10.1117/12.2612210
摘要

Pediatric spinal cord morphometry has been relatively understudied because of non-optimal image quality due to the difficulty of spine imaging, rarity of post-mortem analysis, motion artifacts, and pediatric MR imaging research focus on understanding spinal injury or pathology. The pediatric brain has been comparatively well-studied with white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF) differences observed with age and gender. Therefore, a greater understanding of pediatric cervical and thoracic spinal cord morphometry would be beneficial for developing clinically relevant cord growth models. We focused on retrospectively characterizing cervical and thoracic spinal cord growth and morphometry changes in a healthy pediatric population. High resolution multi-echo gradient echo (mFFE) images were acquired from pediatric spinal cord scans from 63 patients (mean: 9.24 years, range: 0.83-17.67 years). The mFFE scans were then registered to the template space for uniform viewing and analysis by using a customized semi-automatic processing pipeline involving Spinal Cord Toolbox (SCT). Jacobian control determinants were calculated, and subsequent WM, GM, dorsal column, lateral funiculi, and ventral funiculi scalar averaging was conducted. Random effects models were used to model age-related Jacobian scalar differences. Observing the growth of cord matter by patient age and vertebral level suggests that the upper cervical spinal cord, specifically C2-C3, and mid-thoracic spinal cord, T3-T8, grow faster than other cervical levels and thoracic levels, respectively. This knowledge will facilitate clinical decision making when considering spine interventions and conducting radiological analysis in children with cervical and thoracic spine abnormalities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sx发布了新的文献求助10
刚刚
香精完成签到,获得积分10
刚刚
落后紫夏完成签到,获得积分10
1秒前
靓丽行天完成签到,获得积分10
1秒前
在水一方应助mmyhn采纳,获得10
1秒前
ZY完成签到 ,获得积分10
1秒前
Wang完成签到,获得积分10
1秒前
iceeer完成签到,获得积分10
2秒前
2秒前
2秒前
fanfan完成签到,获得积分10
2秒前
科研通AI5应助Tingting采纳,获得10
2秒前
suliang应助愉快寄真采纳,获得10
3秒前
3秒前
星睿发布了新的文献求助10
4秒前
Jasper应助平常的忆文采纳,获得10
4秒前
5秒前
认真的薄荷完成签到,获得积分10
5秒前
欣喜书蕾完成签到,获得积分10
5秒前
6秒前
去偷火龙果完成签到,获得积分10
6秒前
实心球发布了新的文献求助30
6秒前
太叔白风完成签到,获得积分10
6秒前
6秒前
晨曦完成签到 ,获得积分10
6秒前
SYLH应助静香同学采纳,获得10
6秒前
XCZV完成签到,获得积分20
7秒前
7秒前
7秒前
大力蚂蚁完成签到,获得积分10
8秒前
zhihui完成签到,获得积分10
8秒前
熬夜大王完成签到,获得积分10
8秒前
dilili完成签到,获得积分20
8秒前
WXY发布了新的文献求助10
8秒前
Kail完成签到,获得积分10
8秒前
111发布了新的文献求助10
9秒前
10秒前
10秒前
yuti发布了新的文献求助10
10秒前
幽芊细雨完成签到,获得积分10
10秒前
高分求助中
Handbook of Diagnosis and Treatment of DSM-5-TR Personality Disorders 800
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
建筑材料检测与应用 370
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3830708
求助须知:如何正确求助?哪些是违规求助? 3373047
关于积分的说明 10477167
捐赠科研通 3093166
什么是DOI,文献DOI怎么找? 1702362
邀请新用户注册赠送积分活动 818956
科研通“疑难数据库(出版商)”最低求助积分说明 771173