亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Identification of spreading influence nodes via multi-level structural attributes based on the graph convolutional network

计算机科学 节点(物理) 图形 计算复杂性理论 理论计算机科学 算法 数据挖掘 人工智能 结构工程 工程类
作者
Yang Ou,Qiang Guo,Jia-Liang Xing,Jian-Guo Liu
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:203: 117515-117515 被引量:41
标识
DOI:10.1016/j.eswa.2022.117515
摘要

The network structural properties at the micro-level, community-level and macro-level have different contributions to the spreading influence of nodes. The challenge is how to make better use of different structural information while keeping the efficiency of the spreading influence identification algorithm. By taking the micro-level, community-level and macro-level structural information into account, an improved graph convolutional network based algorithm, namely the multi-channel RCNN (M-RCNN) is proposed to identify spreading influence nodes. As we focus on both the efficiency and accuracy of the algorithm, three centralities with low computational complexity are introduced: the sum of neighbors’ degree, the number of communities a node is connected with, and the k -core value. To construct the input of the M-RCNN, we first use the Breadth-first algorithm to extract a fixed-size neighborhood network for each node. Then exploit three matrices to encode the input of nodes rather than simply embedding different levels of structural information into the same matrix, which allows the weights that couple the three structural properties to be learned automatically during the training process. The experiments conducted on nine real-world networks show that, on average, compared with the RCNN algorithm, the accuracy obtained by the M-RCNN outperforms by 9.25%. By conducting efficiency test on nine Barabasi–Albert networks, the results show that the computational complexity of the M-RCNN is close to the RCNN. This work is helpful for deeply understanding the effects of network structure on the graph convolutional network performance. • The graph convolutional network is introduced to identify spreading influence nodes. • The structure properties of networks at multiple levels are taken into account. • The proposed model trained by small networks can make predictions in large networks. • Three-channel inputs are constructed to preserve different structural information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11完成签到,获得积分10
10秒前
Orange应助也曦采纳,获得10
24秒前
34秒前
也曦完成签到,获得积分10
52秒前
冬菊完成签到 ,获得积分10
1分钟前
科研通AI5应助7NEFZ采纳,获得10
1分钟前
是木易呀完成签到,获得积分10
1分钟前
Lucas应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
3分钟前
3分钟前
7NEFZ发布了新的文献求助10
3分钟前
迅速的蜡烛完成签到 ,获得积分10
3分钟前
7NEFZ完成签到,获得积分20
3分钟前
ppppppp_76完成签到 ,获得积分10
3分钟前
豌豆发布了新的文献求助10
4分钟前
4分钟前
山橘月发布了新的文献求助10
4分钟前
漠mo完成签到 ,获得积分10
5分钟前
可爱的函函应助万晓博采纳,获得30
5分钟前
科研通AI5应助7NEFZ采纳,获得10
5分钟前
5分钟前
7NEFZ发布了新的文献求助10
6分钟前
万能图书馆应助wang采纳,获得30
6分钟前
6分钟前
133发布了新的文献求助10
6分钟前
dormraider完成签到,获得积分10
6分钟前
wang完成签到,获得积分10
7分钟前
澄碧千顷完成签到 ,获得积分10
7分钟前
7分钟前
7分钟前
wang发布了新的文献求助30
7分钟前
chenwuhao完成签到 ,获得积分10
7分钟前
函数完成签到 ,获得积分10
8分钟前
8分钟前
MizuAsagi发布了新的文献求助50
8分钟前
重要问芙brk完成签到,获得积分10
8分钟前
9分钟前
zzzwhy发布了新的文献求助10
9分钟前
Ava应助11采纳,获得10
9分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784795
求助须知:如何正确求助?哪些是违规求助? 3330055
关于积分的说明 10244188
捐赠科研通 3045395
什么是DOI,文献DOI怎么找? 1671660
邀请新用户注册赠送积分活动 800577
科研通“疑难数据库(出版商)”最低求助积分说明 759508