Deconvoluting CO<sub>2</sub> Electroreduction Membrane-Electrode-Assembly Performance Via Five-Electrode Setup

恒电位仪 电极 参比电极 阳极 介电谱 电解 电解质 材料科学 膜电极组件 分析化学(期刊) 阴极 电化学 工作电极 标准氢电极 化学 色谱法 物理化学
作者
Kentaro U. Hansen,Feng Jiao
出处
期刊:Meeting abstracts 卷期号:MA2022-01 (39): 1768-1768
标识
DOI:10.1149/ma2022-01391768mtgabs
摘要

For CO 2 electrolysis, a zero-gap or membrane-electrode-assembly (MEA) configuration is desirable for lowering internal resistances and enabling the use of dilute supporting electrolytes for operation at industrially relevant current densities (>100 mA cm -2 ). However, to rationally optimize individual electrolyzer components, the contributions that cell components (cathode, anode, and membrane) have on the total cell voltage and internal resistance need to be deconvoluted. Moreover, deconvolution techniques can provide operando snapshots of electrode dynamics and component potentials to help assess component degradation for accelerated stability testing protocols 1 . In this work, we present a technique for the complete deconvolution of the cell voltage and internal resistances through a five-electrode setup. Unlike similar methods 1-3 , three additional reference electrodes are introduced: two quasi-reference electrodes on each side of the MEA and one fritted reference electrode in the supporting electrolyte, fed to the anode, for validation of quasi-reference electrode potentials before and after testing. Furthermore, the technique presented in this work was optimized for ease of implementation for a standard test setup for laboratory-scale CO2 electrolysis without requiring modifications to the electrochemical cell endplates or a multi-channel potentiostat. Using this five-electrode setup, a significant membrane impedance at both high and low frequencies is identified for a CO 2 reduction MEA employing an anion exchange membrane. As shown via electrochemical impedance spectroscopy (EIS) (Fig. 1b), the membrane accounts for about 40% of the total cell impedance at high frequencies. Notably, the membrane also exhibits a low-frequency impedance attributed to concentration gradients across the membrane 4 . As an initial validation check, the individual EIS spectra of each component were summed to obtain the measured full cell EIS spectra, albeit with an introduction of measurement noise (Fig. 1b, d). To further validate the setup, the corners of the cathode and anode electrodes were cut asymmetrically to assess sensitivity towards edge effects from electrode misalignment reported for a similar technique (Fig. 1a,c) 2 . We demonstrate that the membrane impedance can be reversed by deliberately introducing this edge effect (Fig. 1b,d). In this reversed configuration, the measured membrane impedance is flipped due to the apparent reference electrode positions being swapped. Moreover, in this configuration the user inadvertently measures the cathode and anode through the membrane, thereby convoluting the signal. This is of significant concern for directly measuring the cathode mass transport dynamics measured at low frequency (<100 Hz) as the membrane has its own characteristic low-frequency impedance. We will present these results and discuss the application of this method towards catalyst layer optimization, diagnosing a working CO 2 reduction MEA employing a cation exchange membrane and comparing the performance of zero-gap and hot-pressed MEA configurations. References O. Sorsa, J. Nieminen, P. Kauranen, and T. Kallio, J. Electrochem. Soc., 166, F1326–F1336 (2019) https://iopscience.iop.org/article/10.1149/2.0461916jes. R. Zeng, R. C. T. Slade, and J. R. Varcoe, Electrochim. Acta, 56, 607–619 (2010) http://dx.doi.org/10.1016/j.electacta.2010.08.032. D. Salvatore and C. P. Berlinguette, ACS Energy Lett., 5, 215–220 (2020) https://pubs.acs.org/doi/10.1021/acsenergylett.9b02356. A. Kozmai et al., Membranes (Basel)., 11, 1–17 (2021). Acknowledgement This work was supported by the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy under award no. DE-EE0009287.0001 Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
康康XY完成签到 ,获得积分10
刚刚
zjh发布了新的文献求助10
2秒前
淡定水杯发布了新的文献求助10
4秒前
李健的小迷弟应助YGTRECE采纳,获得10
7秒前
赘婿应助亦雪采纳,获得10
8秒前
wrr应助Zhidong Wei采纳,获得10
8秒前
爱学习的瑞瑞子完成签到 ,获得积分10
10秒前
宁为树发布了新的文献求助10
10秒前
10秒前
15秒前
15秒前
chiaoyin999应助潇潇雨歇采纳,获得10
17秒前
18秒前
我是老大应助李哈哈采纳,获得10
18秒前
19秒前
19秒前
YGTRECE发布了新的文献求助10
20秒前
亦雪发布了新的文献求助10
21秒前
rye227应助张文博采纳,获得20
24秒前
wlf发布了新的文献求助10
24秒前
24秒前
标致小翠完成签到,获得积分10
25秒前
25秒前
xiao_J发布了新的文献求助10
26秒前
YGTRECE完成签到,获得积分20
26秒前
27秒前
chenn完成签到 ,获得积分10
28秒前
29秒前
葱葱发布了新的文献求助10
32秒前
飞飞飞飞飞完成签到,获得积分10
33秒前
nixx发布了新的文献求助10
33秒前
研友_VZG7GZ应助zilhua采纳,获得10
33秒前
ethan2801完成签到,获得积分10
34秒前
xujy完成签到,获得积分10
34秒前
共享精神应助wlf采纳,获得10
35秒前
41秒前
共享精神应助曾梦采纳,获得10
42秒前
莫道桑榆完成签到,获得积分10
42秒前
WJ完成签到,获得积分10
43秒前
Auston_zhong应助王恒采纳,获得10
43秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778047
求助须知:如何正确求助?哪些是违规求助? 3323723
关于积分的说明 10215564
捐赠科研通 3038918
什么是DOI,文献DOI怎么找? 1667711
邀请新用户注册赠送积分活动 798351
科研通“疑难数据库(出版商)”最低求助积分说明 758339