Solar Spectrum Conversion for Photovoltaics Using Nanoparticles

光伏 材料科学 光谱(功能分析) 光电子学 光伏系统 物理 工程类 电气工程 量子力学
作者
W.G.J.H.M. van,A. Meijerink,R.E.I. Schropp
出处
期刊:InTech eBooks [InTech]
被引量:43
标识
DOI:10.5772/39213
摘要

The possibility to tune chemical and physical properties in nanosized materials has a strong impact on a variety of technologies, including photovoltaics. One of the prominent research areas of nanomaterials for photovoltaics involves spectral conversion. Conventional single-junction semiconductor solar cells only effectively convert photons of energy close to the semiconductor band gap (Eg) as a result of the mismatch between the incident solar spectrum and the spectral absorption properties of the material (Green 1982, Luque and Hegedus 2003). Photons with an energy Eph smaller than the band gap are not absorbed and their energy is not used for carrier generation. Photons with energy Eph larger than the band gap are absorbed, but the excess energy Eph – Eg is lost due to thermalization of the generated electrons. These fundamental spectral losses in a singlejunction silicon solar cell can be as large as 50% (Wolf 1971), while the detailed balance limit of conversion efficiency for such a cell was determined to be 31% (Shockley and Queisser 1961). Several routes have been proposed to address spectral losses, and all of these methods or concepts obviously concentrate on a better exploitation of the solar spectrum, e.g., multiple stacked cells (Law et al. 2010), intermediate band gaps (Luque and Marti 1997), multiple exciton generation (Klimov 2006, Klimov et al. 2007), quantum dot concentrators (Chatten et al. 2003a) and down- and up-converters (Trupke et al. 2002a, b), and down-shifters (Richards 2006a, Van Sark 2005). In general they are referred to as Third or Next Generation photovoltaics (PV) (Green 2003, Luque et al. 2005, Marti and Luque 2004). Nanotechnology is essential in realizing most of these concepts (Soga 2006, Tsakalakos 2008), and semiconductor nanocrystals have been recognized as ‘building blocks’ of nanotechnology for use in next generation solar cells (Kamat 2008). Being the most mature approach, it is not surprising that the current world record conversion efficiency is 43.5% for a GaInP/GaAs/GaInNAs solar cell (Green et al. 2011), although this is reached at a concentration of 418 times.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
zjw1997发布了新的文献求助10
1秒前
1秒前
香蕉觅云应助TANG采纳,获得10
2秒前
wanci应助优雅的洙采纳,获得10
2秒前
xiaoqf完成签到,获得积分10
2秒前
无悔这一发布了新的文献求助10
2秒前
3秒前
梧桐完成签到,获得积分10
3秒前
小贝发布了新的文献求助10
4秒前
4秒前
5秒前
聪慧豁发布了新的文献求助10
5秒前
默默蓝发布了新的文献求助10
6秒前
云歇雨住完成签到,获得积分10
6秒前
脑洞疼应助Li采纳,获得10
6秒前
认真的谷蓝完成签到,获得积分10
7秒前
langlang发布了新的文献求助10
7秒前
KKL完成签到 ,获得积分10
8秒前
VDC发布了新的文献求助10
8秒前
烟花应助Lin采纳,获得10
9秒前
9秒前
9秒前
insist完成签到,获得积分10
9秒前
lyh完成签到,获得积分10
9秒前
Akim应助ll采纳,获得10
10秒前
充电宝应助liwenhao采纳,获得10
10秒前
完美世界应助哈七采纳,获得10
10秒前
幸福笑天完成签到 ,获得积分10
11秒前
科研通AI5应助拾伍采纳,获得10
12秒前
小白白应助fanyi采纳,获得10
13秒前
13秒前
小罗黑的发布了新的文献求助10
13秒前
背后采梦完成签到,获得积分10
14秒前
zuo发布了新的文献求助10
15秒前
彭于彦祖应助samaelchat采纳,获得20
15秒前
hefang完成签到,获得积分10
15秒前
伍六七完成签到,获得积分10
15秒前
16秒前
科研通AI6应助狂野如波采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertebrate Palaeontology, 5th Edition 500
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4758671
求助须知:如何正确求助?哪些是违规求助? 4100535
关于积分的说明 12687803
捐赠科研通 3815382
什么是DOI,文献DOI怎么找? 2106317
邀请新用户注册赠送积分活动 1130968
关于科研通互助平台的介绍 1009320