Lasso(编程语言)
列联表
贝叶斯概率
计算机科学
估计员
差异(会计)
泊松分布
群(周期表)
人工智能
贝叶斯推理
机器学习
数据挖掘
统计
数学
会计
万维网
业务
有机化学
化学
作者
Sudhir Raman,Thomas J. Fuchs,Peter J. Wild,Edgar Dahl,Volker Röth
标识
DOI:10.1145/1553374.1553487
摘要
Group-Lasso estimators, useful in many applications, suffer from lack of meaningful variance estimates for regression coefficients. To overcome such problems, we propose a full Bayesian treatment of the Group-Lasso, extending the standard Bayesian Lasso, using hierarchical expansion. The method is then applied to Poisson models for contingency tables using a highly efficient MCMC algorithm. The simulated experiments validate the performance of this method on artificial datasets with known ground-truth. When applied to a breast cancer dataset, the method demonstrates the capability of identifying the differences in interactions patterns of marker proteins between different patient groups.
科研通智能强力驱动
Strongly Powered by AbleSci AI