材料科学
锐钛矿
X射线光电子能谱
无定形固体
法拉第效率
拉曼光谱
纳米颗粒
化学工程
钠
氧化钛
电化学
锂(药物)
二氧化钛
氧化物
阳极
纳米技术
钛
离子
无机化学
电极
光催化
冶金
物理化学
有机化学
结晶学
催化作用
化学
工程类
医学
生物化学
物理
光学
内分泌学
作者
Li‐Ming Wu,Dominic Bresser,Daniel Buchholz,Guinevere A. Giffin,Claudia Ramirez Castro,Anders Ochel,Stefano Passerini
标识
DOI:10.1002/aenm.201401142
摘要
It is frequently assumed that sodium‐ion battery chemistry exhibits a behavior that is similar to the more frequently investigated lithium‐ion chemistry. However, in this work it is shown that there are great, and rather surprising, differences, at least in the case of anatase TiO 2 . While the generally more reducing lithium ion is reversibly inserted in the anatase TiO 2 lattice, sodium ions appear to partially reduce the rather stable oxide and form metallic titanium, sodium oxide, and amorphous sodium titanate, as revealed by means of in situ X‐ray diffraction, ex situ X‐ray photoelectron spectroscopy, scanning electron microscopy, and Raman spectroscopy. Nevertheless, once the electrochemical transformation of anatase TiO 2 is completed, the newly formed material presents a very stable long‐term cycling performance, excellent high rate capability, and superior coulombic efficiency, highlighting it as a very promising anode material for sodium‐ion battery applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI